Fibers and Polymers

, Volume 18, Issue 4, pp 649–657 | Cite as

Tuning the properties of PVDF or PVDF-HFP fibrous materials decorated with ZnO nanoparticles by applying electrospinning alone or in conjunction with electrospraying

  • Mariya Spasova
  • Nevena Manolova
  • Nadya Markova
  • Iliya Rashkov


Novel composite nanofibrous materials of poly(vinylidene fluoride) (PVDF) or poly(vinylidene fluoride-cohexafluoropropylene) (PVDF-HFP) and ZnO nanoparticles were prepared by conjunction of electrospinning and electrospraying techniques. Simultaneous electrospinning of concentrated solution of PVDF or PVDF-HFP and electrospraying of suspension of ZnO in diluted PVDF or PVDF-HFP solution enable the preparation of materials consisting of fibers on which ZnO was deposited on the fibers’ surface (design type “on”). These fibrous materials were compared with materials consisting of PVDF or PVDF-HFP fibers in which ZnO was incorporated in the fibers (design type “in”) and which were obtained by one-pot electrospinning of a suspension of ZnO nanoparticles in concentrated PVDF or PVDF-HFP solution. The fiber morphology and the presence of ZnO “in” or “on” the fibers were observed by scanning electron microscopy (SEM) and by transmission electron microscopy (TEM). The effect of the used technique on the type, size and shape of the obtained structures was discussed. The fibrous mats were studied by differential scanning calorimetry (DSC), thermogravimetric analysis (TGA), X-ray diffraction (XRD), contact angle measurements and mechanical tests as well. It was found that the decoration of fibers with ZnO resulted in increase of their thermal stability and hydrophobicity. The microbiological tests showed that the materials of design type “on” possessed strong antibacterial activity against the pathogenic microorganism Staphylococcus aureus. The results suggest that, due to their antibacterial activity, the obtained composite materials are suitable for wound dressing applications.


PVDF ZnO Electrospinning Electrospraying Antibacterial activity 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    B. Bhushan, Y. C. Jung, and K. Koch, Phil. Trans. R. Soc. A, 367, 1631 (2009).CrossRefGoogle Scholar
  2. 2.
    R. Crawford and E. Ivanova, “Superhydrophobic Surfaces?, Elsevier Inc., ISBN: 978-0-12-801109-6 (2015).Google Scholar
  3. 3.
    N. Kimura, T. Sakumoto, Y. Mori, K. Wei, B. Kim, K. Song, and I. Kim, Compos. Sci. Technol., 92, 120 (2014).CrossRefGoogle Scholar
  4. 4.
    V. Vatanpour, M. Yekavalangi, and M. Safarpour, Sep. Purif. Technol., 163, 300 (2016).CrossRefGoogle Scholar
  5. 5.
    J. Ji, F. Liu, N. Hashim, M. Abed, and K. Li, React. Funct. Polym., 86, 134 (2015).CrossRefGoogle Scholar
  6. 6.
    F. Liu, N. Hashim, Y. Liu, M. Abed, and K. Li, J. Membr. Sci., 375, 1 (2011).CrossRefGoogle Scholar
  7. 7.
    E. Thangavel, S. Ramasundaram, S. Pitchaimuthu, S. Hong, S. Lee, S. Yoo, D. Kim, E. Ito, and Y. Kang, Compos. Sci. Technol., 90, 187 (2014).CrossRefGoogle Scholar
  8. 8.
    H. Guo, Z. Li, S. Dong, W. Chen, L. Deng, Y. Wang, and D. Ying, Colloid Surf. B-Biointerfaces, 96, 29 (2012).CrossRefGoogle Scholar
  9. 9.
    C. Su, J. Shih, M. Huang, C. Wang, W. Shih, and Y. Liu, Fiber. Polym., 13, 698 (2012).CrossRefGoogle Scholar
  10. 10.
    N. Chanunpanich, B. Lee, and H. Byun, Macromol. Res., 16, 212 (2008).CrossRefGoogle Scholar
  11. 11.
    A. Sirelkhatim, S. Mahmud, A. Seeni, N. Kaus, L. Ann, S. Bakhori, H. Hasan, D. Hasan, and D. Mohamad, Nano-Micro Lett., 7, 219 (2015).CrossRefGoogle Scholar
  12. 12.
    Y. Qing, C. Yang, C. Hu, Y. Zheng, and C. Liu, Appl. Surf. Sci., 326, 48 (2015).CrossRefGoogle Scholar
  13. 13.
    A. Kolodziejczak-Radzimska and T. Jesionowski, Materials, 7, 2833 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Spasova, N. Manolova, N. Markova, and I. Rashkov, Appl. Surf. Sci., 363, 363 (2016).CrossRefGoogle Scholar
  15. 15.
    N. Beyth, Y. Houri-Haddad, A. Domb, W. Khan, R. Hazan, Evid. Based. Complement. Alternat. Med., Article ID 246012, 1 (2015).CrossRefGoogle Scholar
  16. 16.
    W. S. Rasband, ImageJ, U. S. National Institutes of Health, Bethesda, Maryland, USA,, 1997-2016.Google Scholar
  17. 17.
    M. Spasova, R. Mincheva, D. Paneva, N. Manolova, and I. Rashkov, J. Bioact. Compat. Polym., 21, 465 (2006).CrossRefGoogle Scholar
  18. 18.
    Y. D. Wang and M. Cakmak, J. Appl. Polym. Sci. 68, 909 (1998).CrossRefGoogle Scholar
  19. 19.
    G. Yeh, R. Hosemann, J. Loboda-Cackovic, and H. Cackovic, Polymer, 17, 309 (1976).CrossRefGoogle Scholar
  20. 20.
    Y. Xie, Q. Zhang, and X. Fan, J. Appl. Polym. Sci. 89, 2686 (2003).CrossRefGoogle Scholar
  21. 21.
    M. Neidhofer, F. Beaume, L. Ibos, A. Bernes, and C. Lacabanne, Polymer, 45, 1679 (2004).CrossRefGoogle Scholar
  22. 22.
    S. Talam, S. Karumuri, and N. Gunnam, ISRN Nanotechnology, 2012, doi:10.5402/2012/372505.Google Scholar
  23. 23.
    D. Virovska, D. Paneva, N. Manolova, I. Rashkov, and D. Karashanova, Mater. Sci. Eng. C, 60, 184 (2016).CrossRefGoogle Scholar
  24. 24.
    T. He, W. Zhou, A. Bahi, H. Yang, and F. Ko, Chem. Eng. J., 252, 327 (2014).CrossRefGoogle Scholar
  25. 25.
    R. Augustine, H. N. Malik, D. K. Singhal, A. Mukherjee, D. Malakar, N. Kalarikkal, and S. Thomas, J. Polym. Res., 21, 347 (2014).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Mariya Spasova
    • 1
  • Nevena Manolova
    • 1
  • Nadya Markova
    • 2
  • Iliya Rashkov
    • 1
  1. 1.Laboratory of Bioactive Polymers, Institute of PolymersBulgarian Academy of SciencesSofiaBulgaria
  2. 2.Institute of MicrobiologyBulgarian Academy of SciencesSofiaBulgaria

Personalised recommendations