Advertisement

Springer Nature is making Coronavirus research free. View research | View latest news | Sign up for updates

Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers

  • 115 Accesses

  • 6 Citations

Abstract

Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers were investigated. The thermal gravimetric analysis (TGA) demonstrated that POD exhibited higher onset thermal degradation temperature (Tonset) than PMIA, exceeding nearly 80 °C. The thermal degradation kinetics, evaluated by the modified Coats-Redfern method, displayed that the apparent activation energy (Ea) of POD and PMIA fibers was similar when the conversion rate (α) ranges from 0.2 to 0.5, while with the α from 0.6 to 0.8, the Ea of POD was significantly lower than that of PMIA. The fire retardant performance of POD and PMIA fibers were evaluated by cone calorimeter under heat fluxes of 35, 50 and 75 kW/m2, during which the temperature of the fibers were monitored by a thermocouple. Surprisingly, POD fibers showed inferior fire retardant performance in comparison with PMIA, with lower time to ignition (TTI) and higher peak heat release rate (PHRR). The origin of the different fire retardant properties of both fibers was revealed by analyzing the residual chars and gaseous products during thermal pyrolysis. The morphology confirmed that stable and compact chars can be formed in PMIA. In addition, the Fourier Transform Infrared Spectroscopy (FTIR) characterization of the residual char revealed that POD can form carbonaceous chars at the heat flux of 50 kW/m2, while the heat flux of PMIA was 75 kW/m2. The pyrolysis products characterized by pyrolysis-gas chromatography-mass spectrometry (Py-GC-MS) indicated that POD can be pyrolyzed completely at 600 °C, while the temperature of PMIA was 700 °C.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Y. L. Lam, C. W. Kan, and C. W. M. Yuen, Fiber. Polym., 15, 1880 (2014).

  2. 2.

    R. Sonnier, B. Otazaghine, A. Viretto, G. Apolinario, and P. Ienny, Eur. Polym. J., 68, 313 (2015).

  3. 3.

    S. Zhu, M. Shi, and M. Zhu, Fiber. Polym., 14, 525 (2013).

  4. 4.

    H. Zhang, Y. Zhang, T. Xu, A. E. John, Y. Li, W. Li, and B. Zhu, J. Power. Sources, 329, 8 (2016).

  5. 5.

    S. Villar-Rodil, A. Martı́nez-Alonso, and J. M. D. Tascón, J. Anal. Appl. Pyrol., 58-59, 105 (2001).

  6. 6.

    H. Li, Y. Zhu, B. Xu, C. Wu, J. Zhao, and M. Dai, J. Appl. Polym. Sci., 127, 342 (2013).

  7. 7.

    F. Zhu, Q. Feng, R. Liu, Q. Xin, K. Li, and Y. Xu, Text. Res. J., 86, 472 (2016).

  8. 8.

    Y. So, S. W. Froelicher, B. Kaliszewski, and R. DeCaire, Macromolecules, 32, 6565 (1999).

  9. 9.

    G. Cai and W. Yu, J. Therm. Anal. Calorim., 104, 757 (2011).

  10. 10.

    S. Bourbigot, X. Flambard, and S. Duquesne, Polym. Int., 50, 157 (2001).

  11. 11.

    G. P. Robertson, M. D. Guiver, M. Yoshikawa, and S. Brownstein, Polymer, 45, 1111 (2004).

  12. 12.

    Y. Wang, S. H. Goh, and T. Chung, Polymer, 48, 2901 (2007).

  13. 13.

    D. R. Coffin, G. A. Serad, H. L. Hicks, and R. T. Montgomery, Text. Res. J., 52, 466 (1982).

  14. 14.

    S. Villar-Rodil, F. Suárez-García, J. I. Paredes, A. Martínez-Alonso, and J. M. D. Tascón, Chem. Mater., 17, 5893 (2005).

  15. 15.

    M. G. Northolt and J. J. M. Baltussen, J. Appl. Polym. Sci., 83, 508 (2002).

  16. 16.

    F. Suárez-Garcı́a, A. Martı́nez-Alonso, and J. M. D. Tascón, Carbon, 42, 1419 (2004).

  17. 17.

    B. Schulz, M. Bruma, and L. Brehmer, Adv. Mater., 9, 601 (1997).

  18. 18.

    S. Zhu, B. Schulz, M. Bruma, and L. Brehmer, Polym. Adv. Technol., 7, 879 (1996).

  19. 19.

    X. Yang, M. Shi, L. Dong, Y. Ma, G. Ye, and J. Xu, Polym. Degrad. Stabil., 95, 2467 (2010).

  20. 20.

    S. Villar-Rodil, J. I. Paredes, A. Martínez-Alonso, and J. M. D. Tascón, J. Therm. Anal. Calorim., 70, 37 (2002).

  21. 21.

    J. R. Brown and A. J. Power, Polym. Degrad. Stabil., 4, 479 (1982).

  22. 22.

    S.-H. Hsiao and J.-H. Chiou, J. Polym. Sci. A Polym. Chem., 39, 2271 (2001).

  23. 23.

    S. Villar-Rodil, J. I. Paredes, A. Martínez-Alonso, and J. M. D. Tascón, Chem. Mater., 13, 4297 (2001).

  24. 24.

    X. Yang, E. Jia, G. Ye, and J. Xu, Polym. Bull., 72, 1067 (2015).

  25. 25.

    V. Babrauskas, J. Fire. Sci., 1, 9 (1983).

  26. 26.

    B. Schartel and T. R. Hull, Fire. Mater., 31, 327 (2007).

  27. 27.

    S. Bourbigot, X. Flambard, F. Poutch, and S. Duquesne, Polym. Degrad. Stabil., 74, 481 (2001).

  28. 28.

    S. Bourbigot and X. Flambard, Fire. Mater., 26, 155 (2002).

  29. 29.

    X. Zhang, R. Wang, R. Wang, X. Yan, and M. Shi, Text. Res. J., doi:10.1177/0040517517690629 (2017).

  30. 30.

    X. Zhao, F. R. Guerrero, J. Llorca, and D.-Y. Wang, ACS Sustainable. Chem. Eng., 4, 202 (2016).

  31. 31.

    F. Yao, Q. Wu, Y. Lei, W. Guo, and Y. Xu, Polym. Degrad. Stabil., 93, 90 (2008).

  32. 32.

    Y. Zhou, Z. Fu, S. Wang, M. Xiao, D. Han, and Y. Meng, RSC Adv., 6, 40010 (2016).

  33. 33.

    J. R. Brown and A. J. Power, Polym. Degrad. Stabil., 4, 379 (1982).

Download references

Author information

Correspondence to Meiwu Shi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zhang, X., Tang, X., Wang, R. et al. Thermal degradation behaviors and fire retardant properties of poly(1,3,4-oxadiazole)s (POD) and poly(m-phenylene isophthalamide) (PMIA) fibers. Fibers Polym 18, 1421–1430 (2017). https://doi.org/10.1007/s12221-017-1185-7

Download citation

Keywords

  • Thermal degradation behavior
  • Fire retardant properties
  • POD
  • PMIA
  • Mechanism