Skip to main content
Log in

Investigation on hydrostatic resistance and thermal performance of layered waterproof breathable fabrics

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Waterproof breathable layered fabrics allow water vapor passing through, but resist liquid water to pass. This ability of the fabrics to protect rain and snow water while allowing sweat vapor to evaporate from inside to outside atmosphere, leads them to be used as outdoor sportswear or protective clothing. The big challenge of enhanced hydrostatic resistance of these fabrics with proper breathability and thermal comfort has widened the research scope. This study presents an experimental investigation on hydrostatic resistance and thermal behavior of layered waterproof breathable fabrics. Six different types of hydrophobic and hydrophilic membrane laminated layered fabrics were evaluated by varying different fabric parameters in the experiment. Hydrostatic resistance and water vapor permeability of the laminated fabrics were measured by SDL ATLAS Hydrostatic Head Tester and PERMETEST respectively. Thermal properties were evaluated by ALAMBETA instrument. Moreover, FX-3300 air permeability tester was used to measure air permeability which represents the porosity of the fabrics and computer based See System software was used for water contact angle measurement on the outer fabric surface in order to determine the hydrophobic and hydrophilic properties. This experiment clearly discusses the influence of different fabric characteristics and parameters on hydrostatic resistance and thermal properties of the breathable laminated fabrics. The results show that fabric material composition, density, thickness, and hydrophobic and hydrophilic membranes have significant effects on hydrostatic resistance, breathability and thermal properties of different laminated fabrics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. J. Painter, Coat. Fab., 26, 107 (1996).

    Article  CAS  Google Scholar 

  2. B. Das, A. Das, V. Kothari, R. Fanguiero, and M. D. Araujo, J. Eng. Fib. Fab., 4, 20 (2009).

    Google Scholar 

  3. I. Ozen, J. Eng. Fib. Fab., 7, 63 (2012).

    Google Scholar 

  4. Dr. S. K. Chinta and D. Satish, Int. J. Rec. Dev. Eng. Tech., 3, 16 (2014).

    Google Scholar 

  5. A. Das, R. Alagirusamy, and P. Kumar, Aut. Res. J., 11, 54 (2011).

    Google Scholar 

  6. D. A. Holms, “Handbook of Technical Textiles”, pp.282–315, The Textile Institute, Wood Head Publishing Ltd., Cambridge, England, 2000.

    Book  Google Scholar 

  7. A. K. Sen, “Coated Textiles: Principles and Applications”, pp.133–154, Technomic Publishing Co. Inc., Lancaster, Basel, 2001.

    Book  Google Scholar 

  8. J. C. Gretton, D. B. Brook, H. M. Dyson, and S. C. Harlock, Text. Res. J., 68, 936 (1998).

    Article  CAS  Google Scholar 

  9. A. K. Yadav, N. Kasturiya, and G. N. Mathur, MM. Tex. India, 45, 56 (2002).

    Google Scholar 

  10. N. S. Save, M. Jassal, and A. K. Agrawal, J. Ind. Text. 32, 119 (2002).

    Article  CAS  Google Scholar 

  11. A. Mukhopadhyay and V. K. Midha, J. Ind. Text. 37, 225 (2008).

    Article  CAS  Google Scholar 

  12. W. Mayer, U. Moh, and M. Schrierer, Int. Text. Bull., 53, 16 (1989).

    Google Scholar 

  13. Y. K. Kang, C. H. Park, J. Kim, and T. J. Kang, Fiber. Polym., 8, 564 (2007).

    Article  CAS  Google Scholar 

  14. H. W. Ahn, C. H. Park, and S. E. Chung, Text. Res. J., 81, 1438 (2010).

    Google Scholar 

  15. N. Oglakcioclu and A. Marmarali, Fib. Text. East. Eur., 15, 64 (2007).

    Google Scholar 

  16. AATCC 127, Water Resistance: Hydrostatic Pressure Test, 1989.

  17. CSN EN 20811 (800818), Determination of Water Penetration Resistance: Testing with Water Pressure, 1994.

  18. M. Boguslawska-Baczek and L. Hes, Fib. Text. East. Eur., 21, 67 (2013).

    CAS  Google Scholar 

  19. L. Hes, Permetest Instrument, Liberec: Sensora Instrument and Consulting, 2005.

    Google Scholar 

  20. International Standard No. 23-204-02/01, Thermal Properties by Alambeta Device, 2004.

  21. Y. J. Hwang, M. G. McCord, J. S. An, B. C. Kang, and S. W. Park, Text. Res. J., 75, 771 (2005).

    Article  CAS  Google Scholar 

  22. S. Gowri, L. Almeida, T. Amorim, N. Carneiro, A. P. Souto, and M. F. Esteves, Text. Res. J., 80, 1290 (2010).

    Article  CAS  Google Scholar 

  23. W. Fung, “Coated and Laminated Textiles”, pp.149-249, The Textile Institute, Wood Head Publishing Ltd., Cambridge, England, 2002.

    Book  Google Scholar 

  24. G. Havenith, Curr. Probl. Dermatol., 1, 221 (2002).

    Google Scholar 

  25. A. Mukhopadhyay and V. K. Midha, J. Ind. Text., 37, 225 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdur Razzaque.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Razzaque, A., Tesinova, P., Hes, L. et al. Investigation on hydrostatic resistance and thermal performance of layered waterproof breathable fabrics. Fibers Polym 18, 1924–1930 (2017). https://doi.org/10.1007/s12221-017-1154-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-017-1154-1

Keywords

Navigation