Advertisement

Fibers and Polymers

, Volume 18, Issue 4, pp 696–705 | Cite as

Preparation of zero-valent Co/N-CNFs as an immobilized thin film onto graphite disc for methanol electrooxidation

  • Badr M. Thamer
  • Mohamed H. El-Newehy
  • Nasser A. M. Barakat
  • Salem S. Al-Deyab
  • Hak Yong Kim
Article

Abstract

In this study, we developed new method to prepare one-pot current collector/electrode plate to be utilized in the fuel cell technology. In situ preparation of zero-valent N-doped Co carbon nanofibers (Co/N-CNFs) as an immobilized thin film onto graphite disc was achieved by electrospinning technique, followed by calcination at 1100 oC in argon atmosphere. This catalyst was used for methanol electrooxidation in alkaline media. The effects of nitrogen doping and immobilization on the activity and stability of the prepared catalysts were studied using cyclic voltammetry and chronoamperometry, respectively. SEM, TEM, EDX, XRD, and TGA were used to characterize the morphology and composition of Co/N-CNFs catalysts. The results showed that the electrocatalytic activity as well as the stability of Co/N-CNFs towards methanol electrooxidation in alkaline media were significantly affected by both nitrogen doping and immobilization of the catalyst on the graphite disc. Moreover, the methanol concentration has also affected the electrocatalytic activity of Co/N-CNFs-supported immobilized onto graphite disc and Co/N-CNFs-unsupported graphite disc.

Keywords

Cobalt Carbon nanofibers Methanol electrooxidation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    C. K. Dyer, Scientific American, 281, 88 (1999).CrossRefGoogle Scholar
  2. 2.
    J.-H. Wee, J. Power Sources, 173, 424 (2007).CrossRefGoogle Scholar
  3. 3.
    L. D. Paulson, IEEE Comput. 36, 11, 10 (2003).CrossRefGoogle Scholar
  4. 4.
    S. K. Kamarudin, W. R. W. Daud, S. L. Ho, and U. A. Hasran, J. Power Sources, 163, 743 (2007).Google Scholar
  5. 5.
    S. K. Kamarudin, F. Achmad, and W. R. W. Daud, Int. J. Hydrogen Energy, 34, 6902 (2009).CrossRefGoogle Scholar
  6. 6.
    Venkateswarlu Velisala, G. Naga Srinivasulu, B. Srinivasa Reddy, and K. Venkata Koteswara Rao, World J. Eng., 12, 591 (2015).CrossRefGoogle Scholar
  7. 7.
    M. Baldauf and W. Preidel, J. Power Sources, 84, 161 (1999).CrossRefGoogle Scholar
  8. 8.
    R. Parsons and T. J. Vandernoot, J. Electroanal. Chem., 257, 9 (1998).CrossRefGoogle Scholar
  9. 9.
    M. A. A. Rahim, R. M. A. Hameed, and M. W. Khalil, J. Power Sources, 134, 160 (2004).CrossRefGoogle Scholar
  10. 10.
    N. A. Barakat, M. A. Abdelkareem, M. El-Newehy, and H. Y. Kim, Nanoscale Res. Lett., 8, 402 (2013).CrossRefGoogle Scholar
  11. 11.
    L. R. Zhang, J. Zhao, M. Li, H. T. Ni, J. L. Zhang, X. M. Feng, Y. W. Ma, Q. L. Fan, X. Z. Wang, Z. Hu, and W. Huang, New J. Chem., 36, 1108 (2012).CrossRefGoogle Scholar
  12. 12.
    H. Heli, M. Jafarian, M. G. Mahjani, and F. Gobal, Electrochim. Acta, 49, 4999 (2004).CrossRefGoogle Scholar
  13. 13.
    S. Carugno, E. Chassaing, M. Rosso, and G. A. González, Mater. Chem. Phys., 143, 1012 (2014).CrossRefGoogle Scholar
  14. 14.
    M. Jafarian, M. G. Mahjani, H. Heli, F. Gobal, H. Khajehsharifi, and M. H. Hamedi, Electrochim. Acta, 48, 3423 (2003).CrossRefGoogle Scholar
  15. 15.
    N. A. M. Barakat and M. Motlak, Appl. Catal. B-Environ., 154, 221 (2014).CrossRefGoogle Scholar
  16. 16.
    X. Tong, Y. Qin, X. Guo, O. Moutanabbir, X. Ao, E. Pippel, L. Zhang, and M. Knez, Small, 8, 3390 (2012).CrossRefGoogle Scholar
  17. 17.
    N. A. M. Barakat, M. El-Newehy, S. S. Al-Deyab, and H. Y. Kim, Nanoscale Res. Lett., 9, 1 (2014).CrossRefGoogle Scholar
  18. 18.
    Z. K. Ghouri, N. A. M. Barakat, M. Obaid, J. H. Lee, and H. Y. Kim, Ceram. Int., 41, 2271 (2015).CrossRefGoogle Scholar
  19. 19.
    I. M. A. Mohamed, M. Motlak, and H. Fouad, Nano, 11, 1 (2016).CrossRefGoogle Scholar
  20. 20.
    B. M. Thamer, M. H. El-Newehy, S. S. Al-Deyab, M. A. Abdelkareem, H. Y. Kim, and N. A. M. Barakat, Appl. Catal. A-Gen., 498, 230 (2015).CrossRefGoogle Scholar
  21. 21.
    L. Mabena, S. Sinha Ray, S. Mhlanga, and N. Coville, Appl. Nanosci., 1, 67 (2011).CrossRefGoogle Scholar
  22. 22.
    B. Xiong, Y. Zhou, Y. Zhao, J. Wang, X. Chen, R. O’Hayre, and Z. Shao, Carbon N. Y, 52, 181 (2013).CrossRefGoogle Scholar
  23. 23.
    S. S. Mahapatra and J. Datta, Int. J. Electrochem., 2011, 16 (2011).CrossRefGoogle Scholar
  24. 24.
    B. M. Thamer, M. H. El-Newehy, N. A. M. Barakat, M. A. Abdelkareem, S. S. Al-Deyab, and H. Y. Kim, Electrochim. Acta, 142, 228 (2014).CrossRefGoogle Scholar
  25. 25.
    R. M. da Costa Monteiro, Msc. Dissertation, Chalmers University of Technology, Sweden, 2008.Google Scholar
  26. 26.
    S. P. Gubin, Y. I. Spichkin, Y. A. Koksharov, G. Y. Yurkov, A. V. Kozinkin, T. I. Nedoseikina, M. S. Korobov, and A. M. Tishin, J. Magn. Magn. Mater., 265, 234 (2003).Google Scholar
  27. 27.
    N. A. M. Barakat, B. Kim, S. J. Park, Y. Jo, M. H. Jung, and H. Y. Kim, J. Mater. Chem., 19, 7371 (2009).CrossRefGoogle Scholar
  28. 28.
    B. M. Thamer, M. H. El-Newehy, N. A. M. Barakat, M. A. Abdelkareem, S. S. Al-Deyab, and H. Y. Kim, Int. J. Hydrogen Energy, 40, 14845 (2015).CrossRefGoogle Scholar
  29. 29.
    A. J. Bard and L. R. Faulkner, “Electrochemical Methods: Fundamentals and Applications”, 2nd ed., pp.226–260, John Wiley & Sons, Texas, 2001.Google Scholar
  30. 30.
    A. Kabbabi, R. Faure, R. Durand, B. Beden, F. Hahn, J.-M. Leger, and C. Lamy, J. Electroanal. Chem., 444, 41 (1998).CrossRefGoogle Scholar
  31. 31.
    N. A. M. Barakat, M. A. Abdelkareem, M. El-newehy, and H. Y. Kim, Nanoscale Res. Lett., 8, 402 (2013).CrossRefGoogle Scholar
  32. 32.
    N.A.M. Barakat, M. A. Abdelkareem, A. Yousef, S. S. Al- Deyab, M. El-Newehy, and H. Y. Kim, Int. J. Hydrogen Energy, 38, 3387 (2013).CrossRefGoogle Scholar
  33. 33.
    N. A. M. Barakat, M. H. El-Newehy, A. S. Yassin, Z. K. Gouri, and S. S. Al-Deyab, Appl. Catal. A-Gen., 510, 180 (2016).Google Scholar
  34. 34.
    N. A. M. Barakat and M. Motlak, Appl. Catal. B-Environ., 154, 221 (2014).CrossRefGoogle Scholar
  35. 35.
    N. A. M. Barakat, M. Motlak, B. S. Kim, A. G. El-Deen, S. S. Al-Deyab, and A. M. Hamza, J. Mol. Catal. A Chem., 394, 177 (2014).CrossRefGoogle Scholar
  36. 36.
    M. Fleischmann and K. Korinek, D. Pletcher, 31, 39 (1971).Google Scholar
  37. 37.
    M. Vukovic, J. Appl. Electrochem, 24, 878 (1994).CrossRefGoogle Scholar
  38. 38.
    O. Enea, Electrochim. Acta, 35, 375 (1990).CrossRefGoogle Scholar
  39. 39.
    M. A. A. Rahim, R. M. A. Hameed, and M. W. Khalil, J. Power Sources, 134, 160 (2004).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2017

Authors and Affiliations

  • Badr M. Thamer
    • 1
  • Mohamed H. El-Newehy
    • 1
    • 2
  • Nasser A. M. Barakat
    • 3
    • 4
  • Salem S. Al-Deyab
    • 1
  • Hak Yong Kim
    • 3
  1. 1.Petrochemical Research Chair, Department of Chemistry, College of ScienceKing Saud UniversityRiyadhSaudi Arabia
  2. 2.Department of Chemistry, Faculty of ScienceTanta UniversityTantaEgypt
  3. 3.Organic Materials and Fiber Engineering Department, College of EngineeringChonbuk National UniversityJeonjuKorea
  4. 4.Chemical Engineering Department, Faculty of EngineeringMinia UniversityEl MiniaEgypt

Personalised recommendations