Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal

Abstract

Electrospun fiber scaffolds crafted from polyesters are studied extensively for potential tissue engineering applications. For translation of electrospun fibers into the clinic, the FDA requires analysis and quantification of any organic solvent that may be retained in the fibers since many organic solvents can negatively affect cells and tissues. If a significant amount of solvent is retained, then developing procedures for efficient solvent removal may enhance the clinical potential of these materials. In this study we use fourier transform infrared spectroscopy (FTIR), thermogravimetric analysis (TGA), and nuclear magnetic resonance spectroscopy (NMR) to analyze solvent retention. A correlative analysis shows that both FTIR and TGA accurately predicted retention of two different solvents (HFP and chloroform) in our electrospun PLLA scaffolds, thus validating these procedures. We also assess the efficacy of various fiber treatment methods to facilitate organic solvent removal and conclude that submersion in 70 % ethanol and heat treatment at 100 °C were the most efficient methods of removing solvent from electrospun PLLA fibers.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    D. H. Reneker and A. L. Yarin, Polymer, 49, 2387 (2008).

    CAS  Article  Google Scholar 

  2. 2.

    Q. P. Pham, U. Sharma, and A. G. Mikos, Tissue Eng., 12, 1197 (2006).

    CAS  Article  Google Scholar 

  3. 3.

    J. M. Holzwarth and P. X. Ma, Biomaterials, 32, 9622 (2011).

    CAS  Article  Google Scholar 

  4. 4.

    W.-J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res., 60, 613 (2002).

    CAS  Article  Google Scholar 

  5. 5.

    J. Venugopal and S. Ramakrishna, Appl. Biochem. Biotechnol., 125, 147 (2005).

    CAS  Article  Google Scholar 

  6. 6.

    S. Liao, B. Li, Z. Ma, H. Wei, C. Chan, and S. Ramakrishna, Biomed. Mater., 1, R45 (2006).

    CAS  Article  Google Scholar 

  7. 7.

    J. V. Araujo, A. Martins, N. M. Neves, and R. L. Reis, Nanomed., 2, 929 (2007).

    Article  Google Scholar 

  8. 8.

    N. Bolgen, S. Egri, I. A. Isoglu, and E. Piskin, Nanomedicine, 2, 441 (2007).

    Article  Google Scholar 

  9. 9.

    J. Venugopal, S. Low, A. T. Choon, and S. Ramakrishna, J. Biomed. Mater. Res. B Appl. Biomater., 84B, 34 (2008).

    CAS  Article  Google Scholar 

  10. 10.

    N. Ashammakhi, A. Ndreu, L. Nikkola, I. Wimpenny, and Y. Yang, “Advancing Tissue Engineering by Using Electrospun Nanofibers”, 2008.

    Google Scholar 

  11. 11.

    T. J. Sill and H. A. von Recum, Biomaterials, 29, 1989 (2008).

    CAS  Article  Google Scholar 

  12. 12.

    W. Ji, Y. Sun, F. Yang, J. J. J. P. van den Beucken, M. Fan, Z. Chen, and J. A. Jansen, Pharm. Res., 28, 1259 (2011).

    CAS  Article  Google Scholar 

  13. 13.

    U.S. Department of Health and Human Services, Food and Drug Administration, and Center for Devices and Radiological Health, Guidance for the Preparation of a Premarket Notification Application for a Surgical Mesh, 1999.

    Google Scholar 

  14. 14.

    H. B. Wang, M. E. Mullins, J. M. Cregg, A. Hurtado, M. Oudega, M. T. Trombley, and R. J. Gilbert, J. Neural Eng., 6, 016001 (2009).

    Article  Google Scholar 

  15. 15.

    H. B. Wang, M. E. Mullins, J. M. Cregg, C. W. McCarthy, and R. J. Gilbert, Acta Biomater., 6, 2970 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    A. Hurtado, J. M. Cregg, H. B. Wang, D. F. Wendell, M. Oudega, R. J. Gilbert, and J. W. McDonald, Biomaterials, 32, 6068 (2011).

    CAS  Article  Google Scholar 

  17. 17.

    N. J. Schaub, T. Britton, R. Rajachar, and R. J. Gilbert, ACS Appl. Mater. Interfaces, 5, 10173 (2013).

    CAS  Article  Google Scholar 

  18. 18.

    N. J. Schaub and R. J. Gilbert, J. Neural Eng., 8, 046026 (2011).

    Article  Google Scholar 

  19. 19.

    J. M. Zuidema, M. C. Hyzinski-García, K. Van Vlasselaer, N. W. Zaccor, G. E. Plopper, A. A. Mongin, and R. J. Gilbert, Biomaterials, 35, 1439 (2014).

    CAS  Article  Google Scholar 

  20. 20.

    K. Garg, N. A. Pullen, C. A. Oskeritzian, J. J. Ryan, and G. L. Bowlin, Biomaterials, 34, 4439 (2013).

    CAS  Article  Google Scholar 

  21. 21.

    S. He, T. Xia, H. Wang, L. Wei, X. Luo, and X. Li, Acta Biomater., 8, 2659 (2012).

    CAS  Article  Google Scholar 

  22. 22.

    J. Li, Y. Li, L. Li, A. F. T. Mak, F. Ko, and L. Qin, Polym. Degrad. Stabil., 94, 1800 (2009).

    CAS  Article  Google Scholar 

  23. 23.

    Y. Su, Q. Su, W. Liu, G. Jin, X. Mo, and S. Ramakrishna, J. Biomater. Sci. -Polym. Ed., 23, 861 (2012).

    CAS  Article  Google Scholar 

  24. 24.

    B.-M. Min, S. W. Lee, J. N. Lim, Y. You, T. S. Lee, P. H. Kang, and W. H. Park, Polymer, 45, 7137 (2004).

    CAS  Article  Google Scholar 

  25. 25.

    K. S. Rho, L. Jeong, G. Lee, B.-M. Seo, Y. J. Park, S.-D. Hong, S. Roh, J. J. Cho, W. H. Park, and B.-M. Min, Biomaterials, 27, 1452 (2006).

    CAS  Article  Google Scholar 

  26. 26.

    K. E. Park, S. Y. Jung, S. J. Lee, B.-M. Min, and W. H. Park, Int. J. Biol. Macromol., 38, 165 (2006).

    CAS  Article  Google Scholar 

  27. 27.

    V. Krikorian and D. J. Pochan, Macromolecules, 38, 6520 (2005).

    CAS  Article  Google Scholar 

  28. 28.

    A. M. El-Hadi, S. D. Mohan, F. J. Davis, and G. R. Mitchell, J. Polym. Res., 21, 605 (2014).

    Article  Google Scholar 

  29. 29.

    A. M. S. Salem, F. A. Harraz, S. M. El-Sheikh, H. S. Hafez, I. A. Ibrahim, and M. S. A. Abdel-Mottaleb, RSC Adv., 5, 99892 (2015).

    CAS  Article  Google Scholar 

  30. 30.

    B. Czarnik-Matusewicz, S. Pilorz, D. Bieńko, and D. Michalska, Vib. Spectrosc., 47, 44 (2008).

    CAS  Article  Google Scholar 

  31. 31.

    S. E. Stein, “Infrared Spectra”, in NIST Chemistry WebBook, accessed in November 2016.

    Google Scholar 

  32. 32.

    V. E. Johnson, Proc. Natl. Acad. Sci., 110, 19313 (2013).

    CAS  Article  Google Scholar 

  33. 33.

    G. Palazzolo, N. Broguiere, O. Cenciarelli, H. Dermutz, and M. Zenobi-Wong, Tissue Eng. Part A, 21, 2177 (2015).

    CAS  Article  Google Scholar 

  34. 34.

    N. D. Leipzig and M. S. Shoichet, Biomaterials, 30, 6867 (2009).

    CAS  Article  Google Scholar 

  35. 35.

    M. E. Murray, M. G. Mendez, and P. A. Janmey, Mol. Biol. Cell, 25, 87 (2014).

    Article  Google Scholar 

  36. 36.

    S. Sato, T. Wada, R. Ido, Y. Murakoshi, S. Kanehashi, and K. Nagai, J. Appl. Polym. Sci., 131, n/a (2014).

    Google Scholar 

  37. 37.

    M. Mukaka, Malawi Med. J. J. Med. Assoc. Malawi, 24, 69 (2012).

    CAS  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Ryan J. Gilbert.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

D’Amato, A.R., Schaub, N.J., Cardenas, J.M. et al. Evaluation of procedures to quantify solvent retention in electrospun fibers and facilitate solvent removal. Fibers Polym 18, 483–492 (2017). https://doi.org/10.1007/s12221-017-1061-5

Download citation

Keywords

  • Electrospinning
  • Solvent retention
  • TGA
  • FTIR
  • NMR