Skip to main content
Log in

Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The physical properties of natural growth fibers such as chemical composition content and fiber diameter are highly affected by environmental issues such as environmental changes and fiber extraction methods. These irregularities of the natural fibers seriously affect its utilization in composite as reinforcements. In this study, taking into account the importance of the fiber tensile strength, the correlation degrees between the kenaf fiber tensile strength and the fiber chemical composition, crystallinity, orientation degree were analyzed by the grey relational analysis method. Both the kenaf single fiber and fiber bundle were used as XRD and tensile strength test sample. The chemical composition content and the FTIR were carried out to obtain a correct result of the chemical composition content. It found that for the different XRD and tensile strength test samples, the single fiber showed lower crystallinity, higher orientation degree and tensile strength compared with the fiber bundle. The cellulose content and the orientation degree got the higher correlation degree with single fiber tensile strength, which was 0.674 and 0.640. The highest factor associated with the fiber bundle tensile strength was the orientation degree, the correlation degree was 0.747. The hemicellulose content and the crystallinity also got high correlation degree with the fiber bundle strength, which was 0.687 and 0.640.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. L. Liu, Q. Wang, L. Cheng, and J. Qian, Fiber. Polym., 12, 102 (2011).

    Google Scholar 

  2. J. Rout, M. Misra, S. Tripathy, S. K. Nayak, and A. K. Mohanty, Compos. Sci. Technol., 61, 1303 (2001).

    Article  CAS  Google Scholar 

  3. M. Abdelmouleh, S. Boufis, M. N. Belgacem, and A. Dufresne, Compos. Sci. Technol., 67, 1627 (2007).

    Article  CAS  Google Scholar 

  4. V. Tserki, N. E. Zafeiropoulos, F. Simon, and C. Panayiotou, Compos. Pt. A-Appl. Sci. Manuf., 36, 1112 (2005).

    Google Scholar 

  5. A. Bourmaud, C. Morvan, A. Bouali, V. Placet, P. Perré, and C. Baley, Ind. Crop. Prod., 44, 343 (2013).

    Article  CAS  Google Scholar 

  6. H. L. Bos, M. J. A. Van den Oever, and O. Peters, J. Mater. Sci., 37, 1683 (2002).

    Article  CAS  Google Scholar 

  7. S. Fakirov and D. Bhattacharyya, “Handbook of Engineering Biopolymers, Homopolymers, Blends and Composites”, pp.3–36, Munich Hanser Publishers, Cincinnati, 2007.

    Book  Google Scholar 

  8. Y. M. Mwaikambo and M. P. Ansell, Angew Makromol. Chem., 272, 108 (1999).

    Article  CAS  Google Scholar 

  9. I. Duchesne, Cellulose, 8, 103 (2001).

    Article  CAS  Google Scholar 

  10. M. Fan, Bio Resources, 5, 2307 (2010).

    CAS  Google Scholar 

  11. M. M. Kabir, H. Wang, K. T. Lau, and F. Cardona, Compos. Pt. B-Eng., 53, 362 (2013).

    Article  CAS  Google Scholar 

  12. M. M. Kabir, H. Wang, and K. T. L. F. Cardona, Compos. Pt. B-Eng., 43, 2883 (2012).

    Article  CAS  Google Scholar 

  13. H. Suryanto, E. Marsyahyo, and Y. S. Irawan, J. Nat. Fiber., 11, 347 (2014).

    Article  Google Scholar 

  14. A. Bohn, H.-P. Fink, and J. Ganster, Macromol. Chem. Phys., 201, 1913 (2000).

    Article  Google Scholar 

  15. S. Karimi, P. Md. Tahir, A. Karimi, A. Dufresne, and A. Abdulkhani, Carbohydr. Polym., 101, 878 (2014).

    Article  CAS  Google Scholar 

  16. M. Nuruddin, M. Hosur, M. Jamal Uddin, D. Baah, and S. Jeelani, J. Appl. Polym. Sci., 133, 1 (2016).

    Article  Google Scholar 

  17. Z. Li and C. Yu, Fiber. Polym., 15, 2109 (2014).

    Google Scholar 

  18. W. D. Yu, “Textile Material Science”, pp.43–47, China Textile Apparel Press, Beijing, 2012.

    Google Scholar 

  19. A. Taskesen and K. Kütükde, Measurement, 47, 321 (2014).

    Article  Google Scholar 

  20. T. Li, X. L. Wang, W. Wen, and E. H. Li, Adv. Mater., 424-425, 403 (2012).

    Article  Google Scholar 

  21. J. Zhang and J. Zhang, Text. Res. J., 80, 744 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chunhong Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, C., Bai, S., Yue, X. et al. Relationship between chemical composition, crystallinity, orientation and tensile strength of kenaf fiber. Fibers Polym 17, 1757–1764 (2016). https://doi.org/10.1007/s12221-016-6703-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6703-5

Keywords

Navigation