Advertisement

Fibers and Polymers

, Volume 17, Issue 11, pp 1806–1819 | Cite as

Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles

  • Abdol-Rahim Faramarzi
  • Jalal BarzinEmail author
  • Hamid Mobedi
Article

Abstract

Because of a number of facilities, the Electrospray (ES) method is gaining ever-increasing popularity among researchers for producing nano-to-micron-sized particles. Microparticles (MPs) of poly lactic-co-glycolic acid (PLGA) were prepared by using the ES technique. The influence of both solution and apparatus parameters on the morphology, size, size distribution, and uniformity of produced MPs were investigated. Results of SEM images and calculations revealed that polymer concentration is a critical parameter in the ES system. In a semi-dilute moderately entangled regime, chain entanglement can easily occur. Solution flow rate is a key factor among apparatus parameters. Vapour pressure is a key parameter affecting MP morphology. The size of the particles tended to reduce with an increase in voltage. The needle gauge did not have an important impact on particle size. The role of the electric field changed at different collecting distances. Using a saturated combination of EtOH/PVA is an acceptable collecting medium for PLGA MPs. It is possible to produce uniform and spherical MPs by using chloroform as a solvent. However, a reduction in particle size is achievable by using a solvent of chloroform/DMF (90/10 w/w).

Keywords

Poly lactic-co-glycolic acid Electrospray Morphology Size Uniformity 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. Bennet and S. Kim, in “Application of Nanotechnology in Drug Delivery” (A. D. Sezer Ed.), p.257, InTech, Rijeka, 2014.Google Scholar
  2. 2.
    R. Mundargi, V. Babu, V. Rangaswamy, P. Patel, and T. Aminabhavi, J. Control. Release, 125, 193 (2008).CrossRefGoogle Scholar
  3. 3.
    J. Hall, M. Dobrovolskaia, A. Patri, and S. McNeil, Nanomedicine (Lond.), 2, 789 (2007).CrossRefGoogle Scholar
  4. 4.
    J. Bourges, S. Gautier, and E. A. F. Delie, Invest. Ophthalmol. Vis. Sci., 44, 3562 (2003).CrossRefGoogle Scholar
  5. 5.
    E. D. Jalón, M. Blanco-Príeto, P. Ygartua, and S. Santoyo, Int. J. Pharm., 226, 181 (2001).CrossRefGoogle Scholar
  6. 6.
    E. M. Shapiro, Magn. Reson. Med., 73, 376 (2015).CrossRefGoogle Scholar
  7. 7.
    H. K. Makadia and S. J. Siegel, Polymers, 3, 1377 (2011).CrossRefGoogle Scholar
  8. 8.
    E. H. Gang, C. S. Ki, J. W. Kim, J. Lee, B. G. Cha, K. H. Lee, and Y. H. Park, Fiber. Polym., 13, 685 (2012).CrossRefGoogle Scholar
  9. 9.
    F. Zamani, M. Latifi, M. Amani-Tehran, and M. A. Shokrgozar, Fiber. Polym., 14, 698 (2013).CrossRefGoogle Scholar
  10. 10.
    F. Haghighat and S. A. H. Ravandi, Fiber. Polym., 15, 71 (2014).CrossRefGoogle Scholar
  11. 11.
    S. Mahalingam, Z. Xu, and M. Edirisinghe, Langmuir, 31, 9771 (2015).CrossRefGoogle Scholar
  12. 12.
    W. Zhu, S.-J. Lee, N. J. Castro, D. Yan, M. Keidar, and L. G. Zhang, Sci. Rep., 6, 21974 (2016).CrossRefGoogle Scholar
  13. 13.
    R. Bagherzadeh, S. S. Najar, M. Latifi, M. A. Tehran, and L. Kong, J. Biomed. Mater. Res. Part A, 101A, 2107 (2013).CrossRefGoogle Scholar
  14. 14.
    A. Gheibi, M. Latifi, A. A. Merati, and R. Bagherzadeh, J. Polym. Res., 21, 469 (2014).CrossRefGoogle Scholar
  15. 15.
    R. Bagherzadeh, M. Latifi, S. S. Najar, M. A. Tehran, and M. G. A. L. Kong, Text. Res. J., 82, 70 (2011).Google Scholar
  16. 16.
    N. Bock, M. A. Woodruff, D. W. Hutmacher, and T. R. Dargaville, Polymers, 3, 131 (2011).CrossRefGoogle Scholar
  17. 17.
    R. Bagherzadeh, M. Latifi, and L. Kong, J. Biomed. Mater. Res. Part A, 102, 903 (2013).CrossRefGoogle Scholar
  18. 18.
    H. Fu, Q. Liu, and D.-R. Chen, J. Aerosol Sci., 52, 33 (2012).CrossRefGoogle Scholar
  19. 19.
    Y. Wu and R. L. Clark, J. Colloid Interface Sci., 310, 529 (2007).CrossRefGoogle Scholar
  20. 20.
    L. M. M. Costa, R. E. S. Bretas, and J. Rinaldo Gregorio, Mater. Sci. Appl., 1, 247 (2010).Google Scholar
  21. 21.
    N. Bock, T. R. Dargaville, and M. A. Woodruff, Prog. Polym. Sci., 37, 1510 (2012).CrossRefGoogle Scholar
  22. 22.
    M. Jafari-Nodoushan, J. Barzin, and H. Mobedi, Polym. Adv. Technol., 26, 502 (2015).CrossRefGoogle Scholar
  23. 23.
    C. H. Park and J. Lee, J. Appl. Polym. Sci., 114, 430 (2009).CrossRefGoogle Scholar
  24. 24.
    Y. Wu, A. Duong, L. J. Lee, and B. E. Wyslouzil, in “The Delivery of Nanoparticles” (A. A. Hashim Ed.), p.223, InTech, Rijeka, 2012.Google Scholar
  25. 25.
    S. Chakraborty, I.-C. Liao, A. Adler, and K. W. Leong, Adv. Drug Deliv. Rev., 61, 1043 (2009).CrossRefGoogle Scholar
  26. 26.
    A. Jahangiri, M. Barzegar-Jalali, Y. Javadzadeh, H. Hamishehkar, and K. Adibkia, Artif. Cells Nanomed. Biotechnol., 13, 1 (2016).CrossRefGoogle Scholar
  27. 27.
    I. M. Smallwood, “Handbook of Organic Solvent Properties”, Halsted Press, New York, 1996.Google Scholar
  28. 28.
    M. Jafari-Nodoushan, H. Mobedi, and J. Barzin, in “Handbook of Encapsulation and Controlled Release”, pp.413–435, CRC Press, Boca Raton, 2015.Google Scholar
  29. 29.
    M. Jafari-Nodoushan, J. Barzin, and H. Mobedi, J. Chromatogr. B, 1011, 163 (2016).CrossRefGoogle Scholar
  30. 30.
    I. B. Rietveld, K. Kobayashi, H. Yamada, and K. Matsushige, J. Colloid Interface Sci., 298, 639 (2006).CrossRefGoogle Scholar
  31. 31.
    H. Moghadam, M. Samimi, A. Samimi, and M. Khorram, Particuology, 6, 271 (2008).CrossRefGoogle Scholar
  32. 32.
    M. Enayati, Z. Ahmad, E. Stride, and M. Edirisinghe, Curr. Pharm. Biotechnol., 10, 600 (2009).CrossRefGoogle Scholar
  33. 33.
    Y. Xu, M. Skotak, and M. Hanna, J. Microencapsul., 23, 69 (2006).CrossRefGoogle Scholar
  34. 34.
    J. Gomez-Estaca, R. G. M. P. Balaguer, and P. Hernandez-Munoz, Food Hydrocoll., 28, 82 (2012).CrossRefGoogle Scholar
  35. 35.
    P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).CrossRefGoogle Scholar
  36. 36.
    W. S. Khan, R. Asmatulu, M. Ceylan, and A. Jabbarnia, Fiber. Polym., 14, 1235 (2013).CrossRefGoogle Scholar
  37. 37.
    M. Parhizkar, P. J. T. Reardon, J. C. Knowles, R. J. Browning, E. Stride, R. B. Pedley, A. H. Harker, and M. Edirisinghe, Nanomed. Nanotech. Biol. Med., 12, 1919 (2016).CrossRefGoogle Scholar
  38. 38.
    B. Almería, W. Deng, T. M. Fahmy, and A. Gomez, J. Colloid Interface Sci., 343, 125 (2010).CrossRefGoogle Scholar
  39. 39.
    J. Xie, J. C. M. Marijnissen, and C.-H. Wang, Biomaterials, 27, 3321 (2006).CrossRefGoogle Scholar
  40. 40.
    F. Imanparast, M. A. Faramarzi, M. Paknejad, F. Kobarfard, A. Amani, and M. Doosti, J. Appl. Polym. Sci., 133, 43602 (2016).Google Scholar
  41. 41.
    A. M. Gañán-Calvo and A. B. J. Dávila, J. Aerosol Sci., 28, 249 (1997).CrossRefGoogle Scholar
  42. 42.
    R. Hartman, B. Dj, D. Camelot, J. Marijnissen, and B. Scarlett, J. Aerosol Sci., 31, 65 (2000).CrossRefGoogle Scholar
  43. 43.
    G. Liu, X. Miao, W. Fan, R. Crawford, and Y. Xiao, J. Biomim. Biomater. Tissue Eng., 6, 1 (2010).CrossRefGoogle Scholar
  44. 44.
    F. Bagheri-Tar, M. Sahimi, and T. T. Tsotsis, Ind. Eng. Chem. Res., 46, 3348 (2007).CrossRefGoogle Scholar
  45. 45.
    Y. Hong, Y. Lib, Y. Yin, D. Lia, and G. Zou, J. Aerosol Sci., 39, 525 (2008).CrossRefGoogle Scholar
  46. 46.
    X. S. Wu, in “Encyclopedic Handbook of Biomaterials and Bioengineering, Part A: Materials” (D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwarts Eds.), pp.1037–1039, Marcel Dekker, New York, 1995.Google Scholar
  47. 47.
    D. Fantini, M. Zanetti, and L. Costa, Macromol. Rapid Commun., 27, 2038 (2006).CrossRefGoogle Scholar
  48. 48.
    A. Bohr, M. Yang, S. Baldursdóttir, J. Kristensen, M. Dyas, E. Stride, and M. Edirisinghe, Polymer, 53, 3220 (2012).CrossRefGoogle Scholar
  49. 49.
    B. Almería, T. M. Fahmy, and A. Gomez, J. Control. Release, 154, 203 (2011).CrossRefGoogle Scholar
  50. 50.
    B. Almería and A. Gomez, J. Colloid Interface Sci., 417, 121 (2014).CrossRefGoogle Scholar
  51. 51.
    J. D. Oxley in “Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals” (N. Garti and D. J. McClements Eds.), p.135, Woodhead Publishing Limited, Philadelphia, 2012.Google Scholar
  52. 52.
    J.-F. Hu, S.-F. Li, G. R. Nair, and W.-T. Wu, Chem. Eng. Sci., 82, 159 (2012).CrossRefGoogle Scholar
  53. 53.
    Y. Xu and M. A. Hanna, J. Microencapsul., 24, 143 (2007).CrossRefGoogle Scholar
  54. 54.
    Y. Xu and M. A. Hanna, Int. J. Pharm., 320, 30 (2006).CrossRefGoogle Scholar
  55. 55.
    R. Pareta and M. J. Edirisinghe, J. R. Soc. Interface, 3, 573 (2006).CrossRefGoogle Scholar
  56. 56.
    H. Valo, L. Peltonen, and E. A. S. Vehvila inen, Small, 5, 1791 (2009).CrossRefGoogle Scholar
  57. 57.
    Z. Ahmad, H. B. Zhang, U. Farook, M. Edirisinghe, E. Stride, and P. Colombo, J. R. Soc. Interface, 5, 1255 (2008).CrossRefGoogle Scholar
  58. 58.
    H. Nie, Z. Dong, D. Arifin, Y. Hu, and C. Wang, J. Biomed. Mater. Res. A, 95A, 709 (2010).CrossRefGoogle Scholar
  59. 59.
    T. Ciach, Int. J. Pharm., 324, 51 (2006).CrossRefGoogle Scholar
  60. 60.
    J. Xie, L. K. Lim, Y. Phua, and C.-W. W. J. Hua, J. Colloid Interface Sci., 302, 103 (2006).CrossRefGoogle Scholar
  61. 61.
    P. Perrot, “A to Z of Thermodynamics”, p.73, Oxford University Press, Kettering, 1998.Google Scholar
  62. 62.
    M. S. Silberberg, “Chemistry: The Molecular Nature of Matter and Change”, pp.205–206, McGraw-Hill, Boston, 2009.Google Scholar
  63. 63.
    I. V. Wesenbeeck, J. Driver, and J. Ross, Bull. Environ. Contam. Toxicol., 80, 315 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Abdol-Rahim Faramarzi
    • 1
  • Jalal Barzin
    • 1
    Email author
  • Hamid Mobedi
    • 2
  1. 1.Biomaterials DepartmentIran Polymer and Petrochemical InstituteTehranIran
  2. 2.Novel Drug Delivery Systems DepartmentIran Polymer and Petrochemical InstituteTehranIran

Personalised recommendations