Skip to main content
Log in

Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Because of a number of facilities, the Electrospray (ES) method is gaining ever-increasing popularity among researchers for producing nano-to-micron-sized particles. Microparticles (MPs) of poly lactic-co-glycolic acid (PLGA) were prepared by using the ES technique. The influence of both solution and apparatus parameters on the morphology, size, size distribution, and uniformity of produced MPs were investigated. Results of SEM images and calculations revealed that polymer concentration is a critical parameter in the ES system. In a semi-dilute moderately entangled regime, chain entanglement can easily occur. Solution flow rate is a key factor among apparatus parameters. Vapour pressure is a key parameter affecting MP morphology. The size of the particles tended to reduce with an increase in voltage. The needle gauge did not have an important impact on particle size. The role of the electric field changed at different collecting distances. Using a saturated combination of EtOH/PVA is an acceptable collecting medium for PLGA MPs. It is possible to produce uniform and spherical MPs by using chloroform as a solvent. However, a reduction in particle size is achievable by using a solvent of chloroform/DMF (90/10 w/w).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Bennet and S. Kim, in “Application of Nanotechnology in Drug Delivery” (A. D. Sezer Ed.), p.257, InTech, Rijeka, 2014.

  2. R. Mundargi, V. Babu, V. Rangaswamy, P. Patel, and T. Aminabhavi, J. Control. Release, 125, 193 (2008).

    Article  CAS  Google Scholar 

  3. J. Hall, M. Dobrovolskaia, A. Patri, and S. McNeil, Nanomedicine (Lond.), 2, 789 (2007).

    Article  CAS  Google Scholar 

  4. J. Bourges, S. Gautier, and E. A. F. Delie, Invest. Ophthalmol. Vis. Sci., 44, 3562 (2003).

    Article  Google Scholar 

  5. E. D. Jalón, M. Blanco-Príeto, P. Ygartua, and S. Santoyo, Int. J. Pharm., 226, 181 (2001).

    Article  Google Scholar 

  6. E. M. Shapiro, Magn. Reson. Med., 73, 376 (2015).

    Article  CAS  Google Scholar 

  7. H. K. Makadia and S. J. Siegel, Polymers, 3, 1377 (2011).

    Article  CAS  Google Scholar 

  8. E. H. Gang, C. S. Ki, J. W. Kim, J. Lee, B. G. Cha, K. H. Lee, and Y. H. Park, Fiber. Polym., 13, 685 (2012).

    Article  CAS  Google Scholar 

  9. F. Zamani, M. Latifi, M. Amani-Tehran, and M. A. Shokrgozar, Fiber. Polym., 14, 698 (2013).

    Article  CAS  Google Scholar 

  10. F. Haghighat and S. A. H. Ravandi, Fiber. Polym., 15, 71 (2014).

    Article  CAS  Google Scholar 

  11. S. Mahalingam, Z. Xu, and M. Edirisinghe, Langmuir, 31, 9771 (2015).

    Article  CAS  Google Scholar 

  12. W. Zhu, S.-J. Lee, N. J. Castro, D. Yan, M. Keidar, and L. G. Zhang, Sci. Rep., 6, 21974 (2016).

    Article  CAS  Google Scholar 

  13. R. Bagherzadeh, S. S. Najar, M. Latifi, M. A. Tehran, and L. Kong, J. Biomed. Mater. Res. Part A, 101A, 2107 (2013).

    Article  CAS  Google Scholar 

  14. A. Gheibi, M. Latifi, A. A. Merati, and R. Bagherzadeh, J. Polym. Res., 21, 469 (2014).

    Article  Google Scholar 

  15. R. Bagherzadeh, M. Latifi, S. S. Najar, M. A. Tehran, and M. G. A. L. Kong, Text. Res. J., 82, 70 (2011).

  16. N. Bock, M. A. Woodruff, D. W. Hutmacher, and T. R. Dargaville, Polymers, 3, 131 (2011).

    Article  CAS  Google Scholar 

  17. R. Bagherzadeh, M. Latifi, and L. Kong, J. Biomed. Mater. Res. Part A, 102, 903 (2013).

    Article  Google Scholar 

  18. H. Fu, Q. Liu, and D.-R. Chen, J. Aerosol Sci., 52, 33 (2012).

    Article  CAS  Google Scholar 

  19. Y. Wu and R. L. Clark, J. Colloid Interface Sci., 310, 529 (2007).

    Article  CAS  Google Scholar 

  20. L. M. M. Costa, R. E. S. Bretas, and J. Rinaldo Gregorio, Mater. Sci. Appl., 1, 247 (2010).

    CAS  Google Scholar 

  21. N. Bock, T. R. Dargaville, and M. A. Woodruff, Prog. Polym. Sci., 37, 1510 (2012).

    Article  CAS  Google Scholar 

  22. M. Jafari-Nodoushan, J. Barzin, and H. Mobedi, Polym. Adv. Technol., 26, 502 (2015).

    Article  CAS  Google Scholar 

  23. C. H. Park and J. Lee, J. Appl. Polym. Sci., 114, 430 (2009).

    Article  CAS  Google Scholar 

  24. Y. Wu, A. Duong, L. J. Lee, and B. E. Wyslouzil, in “The Delivery of Nanoparticles” (A. A. Hashim Ed.), p.223, InTech, Rijeka, 2012.

  25. S. Chakraborty, I.-C. Liao, A. Adler, and K. W. Leong, Adv. Drug Deliv. Rev., 61, 1043 (2009).

    Article  CAS  Google Scholar 

  26. A. Jahangiri, M. Barzegar-Jalali, Y. Javadzadeh, H. Hamishehkar, and K. Adibkia, Artif. Cells Nanomed. Biotechnol., 13, 1 (2016).

    Article  Google Scholar 

  27. I. M. Smallwood, “Handbook of Organic Solvent Properties”, Halsted Press, New York, 1996.

  28. M. Jafari-Nodoushan, H. Mobedi, and J. Barzin, in “Handbook of Encapsulation and Controlled Release”, pp.413–435, CRC Press, Boca Raton, 2015.

    Google Scholar 

  29. M. Jafari-Nodoushan, J. Barzin, and H. Mobedi, J. Chromatogr. B, 1011, 163 (2016).

    Article  CAS  Google Scholar 

  30. I. B. Rietveld, K. Kobayashi, H. Yamada, and K. Matsushige, J. Colloid Interface Sci., 298, 639 (2006).

    Article  CAS  Google Scholar 

  31. H. Moghadam, M. Samimi, A. Samimi, and M. Khorram, Particuology, 6, 271 (2008).

    Article  CAS  Google Scholar 

  32. M. Enayati, Z. Ahmad, E. Stride, and M. Edirisinghe, Curr. Pharm. Biotechnol., 10, 600 (2009).

    Article  CAS  Google Scholar 

  33. Y. Xu, M. Skotak, and M. Hanna, J. Microencapsul., 23, 69 (2006).

    Article  CAS  Google Scholar 

  34. J. Gomez-Estaca, R. G. M. P. Balaguer, and P. Hernandez-Munoz, Food Hydrocoll., 28, 82 (2012).

    Article  CAS  Google Scholar 

  35. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).

    Article  CAS  Google Scholar 

  36. W. S. Khan, R. Asmatulu, M. Ceylan, and A. Jabbarnia, Fiber. Polym., 14, 1235 (2013).

    Article  CAS  Google Scholar 

  37. M. Parhizkar, P. J. T. Reardon, J. C. Knowles, R. J. Browning, E. Stride, R. B. Pedley, A. H. Harker, and M. Edirisinghe, Nanomed. Nanotech. Biol. Med., 12, 1919 (2016).

    Article  CAS  Google Scholar 

  38. B. Almería, W. Deng, T. M. Fahmy, and A. Gomez, J. Colloid Interface Sci., 343, 125 (2010).

    Article  Google Scholar 

  39. J. Xie, J. C. M. Marijnissen, and C.-H. Wang, Biomaterials, 27, 3321 (2006).

    Article  CAS  Google Scholar 

  40. F. Imanparast, M. A. Faramarzi, M. Paknejad, F. Kobarfard, A. Amani, and M. Doosti, J. Appl. Polym. Sci., 133, 43602 (2016).

    Google Scholar 

  41. A. M. Gañán-Calvo and A. B. J. Dávila, J. Aerosol Sci., 28, 249 (1997).

    Article  Google Scholar 

  42. R. Hartman, B. Dj, D. Camelot, J. Marijnissen, and B. Scarlett, J. Aerosol Sci., 31, 65 (2000).

    Article  CAS  Google Scholar 

  43. G. Liu, X. Miao, W. Fan, R. Crawford, and Y. Xiao, J. Biomim. Biomater. Tissue Eng., 6, 1 (2010).

    Article  Google Scholar 

  44. F. Bagheri-Tar, M. Sahimi, and T. T. Tsotsis, Ind. Eng. Chem. Res., 46, 3348 (2007).

    Article  CAS  Google Scholar 

  45. Y. Hong, Y. Lib, Y. Yin, D. Lia, and G. Zou, J. Aerosol Sci., 39, 525 (2008).

    Article  CAS  Google Scholar 

  46. X. S. Wu, in “Encyclopedic Handbook of Biomaterials and Bioengineering, Part A: Materials” (D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwarts Eds.), pp.1037–1039, Marcel Dekker, New York, 1995.

  47. D. Fantini, M. Zanetti, and L. Costa, Macromol. Rapid Commun., 27, 2038 (2006).

    Article  CAS  Google Scholar 

  48. A. Bohr, M. Yang, S. Baldursdóttir, J. Kristensen, M. Dyas, E. Stride, and M. Edirisinghe, Polymer, 53, 3220 (2012).

    Article  CAS  Google Scholar 

  49. B. Almería, T. M. Fahmy, and A. Gomez, J. Control. Release, 154, 203 (2011).

    Article  Google Scholar 

  50. B. Almería and A. Gomez, J. Colloid Interface Sci., 417, 121 (2014).

    Article  Google Scholar 

  51. J. D. Oxley in “Encapsulation Technologies and Delivery Systems for Food Ingredients and Nutraceuticals” (N. Garti and D. J. McClements Eds.), p.135, Woodhead Publishing Limited, Philadelphia, 2012.

  52. J.-F. Hu, S.-F. Li, G. R. Nair, and W.-T. Wu, Chem. Eng. Sci., 82, 159 (2012).

    Article  CAS  Google Scholar 

  53. Y. Xu and M. A. Hanna, J. Microencapsul., 24, 143 (2007).

    Article  Google Scholar 

  54. Y. Xu and M. A. Hanna, Int. J. Pharm., 320, 30 (2006).

    Article  CAS  Google Scholar 

  55. R. Pareta and M. J. Edirisinghe, J. R. Soc. Interface, 3, 573 (2006).

    Article  CAS  Google Scholar 

  56. H. Valo, L. Peltonen, and E. A. S. Vehvila inen, Small, 5, 1791 (2009).

    Article  CAS  Google Scholar 

  57. Z. Ahmad, H. B. Zhang, U. Farook, M. Edirisinghe, E. Stride, and P. Colombo, J. R. Soc. Interface, 5, 1255 (2008).

    Article  CAS  Google Scholar 

  58. H. Nie, Z. Dong, D. Arifin, Y. Hu, and C. Wang, J. Biomed. Mater. Res. A, 95A, 709 (2010).

    Article  CAS  Google Scholar 

  59. T. Ciach, Int. J. Pharm., 324, 51 (2006).

    Article  CAS  Google Scholar 

  60. J. Xie, L. K. Lim, Y. Phua, and C.-W. W. J. Hua, J. Colloid Interface Sci., 302, 103 (2006).

    Article  CAS  Google Scholar 

  61. P. Perrot, “A to Z of Thermodynamics”, p.73, Oxford University Press, Kettering, 1998.

    Google Scholar 

  62. M. S. Silberberg, “Chemistry: The Molecular Nature of Matter and Change”, pp.205–206, McGraw-Hill, Boston, 2009.

    Google Scholar 

  63. I. V. Wesenbeeck, J. Driver, and J. Ross, Bull. Environ. Contam. Toxicol., 80, 315 (2008).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jalal Barzin.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Faramarzi, AR., Barzin, J. & Mobedi, H. Effect of solution and apparatus parameters on the morphology and size of electrosprayed PLGA microparticles. Fibers Polym 17, 1806–1819 (2016). https://doi.org/10.1007/s12221-016-6685-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6685-3

Keywords

Navigation