Skip to main content

Advertisement

Log in

Preparation, mechanical properties and microstructure of polyoxymethylene fiber through melt spinning and hot drawing by using injection-molding grade resins

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The polyoxymethylene (POM) fiber was melt spun by use of different commercial grades of POM resin, and the effect of post-drawing on mechanical properties and microstructures was investigated extensively. The fiber obtained from the POM resin with a higher melt flow index (MFI) exhibits a better hot-drawing capability and also achieves a greater ultimate draw ratio. The mechanical evaluation reveals that the tensile strength and elastic modulus of POM fiber are improved significantly after post-drawing compared to the as-spun fibers. Although the greater draw ratios result in higher mechanical strength and modulus for the POM fiber, the fiber obtained from the POM resin with an MFI of 13.0 g/10 min achieves the optimal mechanical performance at the ultimate draw ratio. The morphologic and structural developments of POM fiber were studied by scanning electronic microscopy and X-ray powder diffraction. The results indicate that the POM fiber spun by the resin with an MFI of 13.0 g/10 min has a smooth lateral surface and a compact cross section after post-drawing. The fiber samples spun by the POM resins with low MFIs show some hollow disfigurements as well as a rough surface at the ultimate draw ratio, whereas the fiber obtained from the resin with a high MFI of 27.0 g/10 min presents the ununiformity of diameter after post-drawing. The POM fibers achieve a crystalline orientation during the hot-drawing process, which results in a transformation from the spherulitic crystals to the lamellar structure in the drawing direction. The level of crystalline orientation can be improved with an increase of draw ratio and thus results in a high modulus and strength for the resulting POM fiber samples. In addition, the thermal analysis indicates that the crystallinity of the as-spun fibers can be enhanced by post-drawing due to the orientation-induced crystallization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. N. Nießner in “Encyclopedia of Materials: Science and Technology-Polyacetal” (K. H. J. Buschow, R. W. Cahn, M. C. Flemings, B. Ilschner, E. J. Kramer, S. Mahajan, and P. Veyssière Eds.), pp.7141–7144, Elsevier, Amsterdam (NL), 2011.

  2. Y. Li, Z. Tao, Z. Chen, J. Hui, L. Li, and A. Zhang, Polymer, 52, 2059 (2011).

    Article  CAS  Google Scholar 

  3. K. Pielichowska, E. Dryzek, Z. Olejniczak, E. Pamuła, and J. Pagacz, Polym. Adv. Technol., 24, 318 (2013).

    Article  CAS  Google Scholar 

  4. G. S. Heinlein and S. J. Timpe, J. Appl. Polym. Sci., 131, 40762 (2014).

    Article  Google Scholar 

  5. X. J. Guo, J. W. Zhang, and J. J. Huang, Polymer, 69, 103 (2015).

    Article  CAS  Google Scholar 

  6. Y. Gao, S. Sun, Y. He, X. Wang, and D. Wu, Compos. Pt. B-Eng., 42, 1945 (2011).

    Article  Google Scholar 

  7. A. R. Bunsell, “Encyclopedia of Materials: Science and Technology”, 2nd ed., pp.1–10, Elsevier, Amsterdam, 2005.

    Book  Google Scholar 

  8. T. Konaka, K. Nakagawa, and S. Yamakawa, Polymer, 26, 462 (1985).

    Article  CAS  Google Scholar 

  9. P. D. Coates and I. M. Ward, J. Polym. Sci. Pt. B-Polym. Phys., 16, 2031 (1978).

    Article  CAS  Google Scholar 

  10. E. S. Clark and L. S. Scott, Polym. Eng. Sci., 14, 682 (1974).

    Article  CAS  Google Scholar 

  11. B. Brew and I. M. Ward, Polymer, 19, 1338 (1978).

    Article  CAS  Google Scholar 

  12. T. Komatsu, S. Enoki, and A. Aoshima, Polymer, 32, 1983 (1991).

    Article  CAS  Google Scholar 

  13. T. Komatsu, S. Enoki, and A. Aoshima, Polymer, 32, 1988 (1991).

    Article  CAS  Google Scholar 

  14. T. Komatsu, S. Enoki, and A. Aoshima, Polymer, 32, 1994 (1991).

    Article  CAS  Google Scholar 

  15. T. Komatsu, S. Enoki, and A. Aoshima, Polymer, 32, 2992 (1991).

    Article  CAS  Google Scholar 

  16. T. Komatsu, S. Enoki, and A. Aoshima, Polymer, 33, 2123 (1992).

    Article  CAS  Google Scholar 

  17. J. M. Samon, J. M. Schultz, B. S. Hsiao, S. Khot, and H. R. Johnson, Polymer, 42, 1547 (2001).

    Article  CAS  Google Scholar 

  18. J. M. Samon, J. M. Schultz, and B. S. Hsiao, Polymer, 43, 1873 (2002).

    Article  CAS  Google Scholar 

  19. T. Komatsu, J. Mat. Sci., 28, 3043 (1993).

    Article  CAS  Google Scholar 

  20. T. Komatsu, J. Polym. Sci. Pt. B-Polym. Phys., 35, 107 (1997).

    Article  CAS  Google Scholar 

  21. P. S. Hope, A. Richardson, and I. M. Ward, J. Appl. Polym. Sci., 26, 2879 (1981).

    Article  CAS  Google Scholar 

  22. S. Lüft and P. M. Visakh in “Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites” (S. Visakh, P. M. Visakh, and S. Chandran Eds.), pp.1–10, John Wiley & Sons, Hoboken, 2014.

  23. K. Pielichowska in “Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites” (S. Visakh, P. M. Visakh, and S. Chandran Eds.), pp.107–151, John Wiley & Sons, Hoboken, 2014.

  24. J. Mohanraj, M. J. Bonner, D. C. Barton, and I. M. Ward, Polymer, 47, 5897 (2006).

    Article  CAS  Google Scholar 

  25. J. Mohanraj, M. J. Bonner, D. C. Barton, A. Galeski, and I. M. Ward, Polymer, 49, 303 (2008).

    Article  CAS  Google Scholar 

  26. R. Nowacki, J. Kolasinska, and E. Piorkowska, J. Appl. Polym. Sci., 79, 2439 (2001).

    Article  CAS  Google Scholar 

  27. R. Nowacki and E. Piorkowska, J. Appl. Polym. Sci., 105, 1054 (2007).

    Article  Google Scholar 

  28. A. Pawlak and E. Piorkowska, J. Appl. Polym. Sci., 74, 1380 (1999).

    Article  CAS  Google Scholar 

  29. J. Varga and G. W. Ehrenstein, Polymer, 37, 5959 (1996).

    Article  CAS  Google Scholar 

  30. X. Zhao and L. Ye, Mater. Sci. Eng. A-Struct. Mater. Prop., 528, 4585 (2011).

    Article  Google Scholar 

  31. H. W. Starkweather Jr, F. C. Wilson, and E. S. Clark, J. Polym. Sci., Pt. B-Polym. Lett., 9, 623 (1971).

    Article  CAS  Google Scholar 

  32. K. Tashiro in “Polyoxymethylene Handbook: Structure, Properties, Applications and Their Nanocomposites” (S. Visakh, P. M. Visakh, and S. Chandran Eds.), pp.193–226, John Wiley & Sons, Hoboken, 2014.

  33. G. A. Carazzolo, J. Polym. Sci., Pt. A-Gen. Pap., 1, 1573 (1963).

    Article  Google Scholar 

  34. L. E. Alexander, “X-ray Diffraction Methods in Polymer Science”, pp.201–582, Wiley, New York, 1969.

    Google Scholar 

  35. J. H. Kim, S. S. Kim, M. S. Park, and M. S. Jang, J. Membr. Sci., 318, 201 (2008).

    Article  CAS  Google Scholar 

  36. T. Schweizer and G. Vancso, Angew. Makromol. Chem., 173, 85 (1989).

    Article  CAS  Google Scholar 

  37. Y. Takeuchi, F. Yamamoto, K. Nakagawa, and S. Yamakawa, J. Polym. Sci., Pt. B-Polym. Phys., 23, 1193 (1985).

    Article  CAS  Google Scholar 

  38. A. Durmus, A. Kasgoz, N. Ercan, D. Akın, and S. Şanlı, Polymer, 53, 5347 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xiaodong Wang or Dezhen Wu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Zhao, W., Wang, X. et al. Preparation, mechanical properties and microstructure of polyoxymethylene fiber through melt spinning and hot drawing by using injection-molding grade resins. Fibers Polym 17, 1464–1474 (2016). https://doi.org/10.1007/s12221-016-6586-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6586-5

Keywords

Navigation