Skip to main content
Log in

Electrospinning of cellulose nanofibers mat for laminated epoxy composite production

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, a new approach consisting of chemical treatment steps followed by electrospinning process was applied to produce cellulose nanofibers from wheat straws. Wheat straws were initially pretreated by NaOH solution to open the complex structure of raw materials and remove non-cellulosic materials. Then, acid and alkali hydrolysis was separately performed to eliminate hemicellulose and soluble lignin. Also, bleaching processes were implemented to remove the insoluble lignin. Cellulose nanofibers were produced by electrospinning of various concentrations of cellulose in different solvents including sodium hydroxide/urea/thiourea, pure trifluoroacetic acid (TFA), and TFA/methylene chloride. Images obtained by Scanning Electron Microscope (SEM) showed long and uniform nanofibers produced from electrospinning of cellulose/TFA/methylene chloride solution. An epoxy based laminated composite was prepared by a lamina of cellulose microfiber and electrospun nanofiber mat using hand lay-up composite manufacturing method. The fracture surface of the epoxy nanocomposite was analyzed by SEM images. In addition, the mechanical properties of laminated epoxy composites were compared with pure epoxy by conducting tensile and impact tests. Tensile test results showed that the ultimate tensile strength, elongation, and modulus of laminated epoxy nanocomposites were significantly increased. Moreover, it was found that by adding a nanofiber lamina in the epoxy composite, the impact resistance was significantly improved as a result of crack growth prevention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. R. Salem, “Structure Formation in Polymeric Fibers”, 1st ed., pp.1–577, Hanser Gardner Publications, Munich, Germany, 2001.

    Google Scholar 

  2. M. Rosa, E. Medeiros, J. Malmonge, K. Gregorski, D. Wood, L. Mattoso, G. Glenn, W. Orts, and S. Imam, Carbohydr. Polym., 81, 83 (2010).

    Article  CAS  Google Scholar 

  3. K. Abe, S. Iwamoto, and H. Yano, Biomacromolecules, 8, 3276 (2007).

    Article  CAS  Google Scholar 

  4. X. Sun, R. Sun, P. Fowler, and M. Baird, Carbohydr. Polym., 55, 379 (2004).

    Article  CAS  Google Scholar 

  5. A. F. Turbak, A. El-Kafrawy, F. W. Snyder Jr, and A. B. Auerbach, U. S. Patent, 4302252 (1981).

    Google Scholar 

  6. J. Lyons and F. K. Ko in “Encyclopedia of Nanoscience and Nanotechnology”, p.727, American Scientific Publishers, 2004.

    Google Scholar 

  7. H.-J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Biomacromolecules, 3, 1233 (2002).

    Article  CAS  Google Scholar 

  8. Y. Shin, M. Hohman, M. Brenner, and G. Rutledge, Polymer, 42, 09955 (2001).

    Article  CAS  Google Scholar 

  9. Y. Kang, H. Kim, Y. Ryu, D. Lee, and S. Park, Polym.-Korea, 26, 360 (2002).

    CAS  Google Scholar 

  10. C. W. Kim, M. W. Frey, M. Marquez, and Y. L. Joo, J. Polym. Sci. Pt. B-Polym. Phys., 43, 1673 (2005).

    Article  CAS  Google Scholar 

  11. P. Kulpinski, J. Appl. Polym. Sci., 98, 1855 (2005).

    Article  CAS  Google Scholar 

  12. R. Arjmandi, A. Hassan, S. J. Eichhorn, M. M. Haafiz, Z. Zakaria, and F. A. Tanjung, J. Mater. Sci., 50, 3118 (2015).

    CAS  Google Scholar 

  13. H.-Z. Li, S.-C. Chen, and Y.-Z. Wang, Compos. Sci. Technol., 115, 60 (2015).

    Article  CAS  Google Scholar 

  14. Y. Lu, M. C. Cueva, E. Lara-Curzio, and S. Ozcan, Carbohydr. Polym., 131, 208 (2015).

    Article  CAS  Google Scholar 

  15. T. Pullawan, A. N. Wilkinson, L. N. Zhang, and S. J. Eichhorn, Carbohydr. Polym., 100, 31 (2014).

    Article  CAS  Google Scholar 

  16. G. Brodeur, E. Yau, K. Badal, J. Collier, K. Ramachandran, and S. Ramakrishnan, Enzyme Res., 2011, 1 (2011).

    Article  Google Scholar 

  17. N. Cordeiro, A. Ashori, Y. Hamzeh, and M. Faria, Mater. Sci. Eng. C-Mater. Biol. Appl., 33, 613 (2013).

    Article  CAS  Google Scholar 

  18. R. B. Phillips, A. W. Kempf, and R. C. Eckert, U. S. Patent, 4372812 (1983).

    Google Scholar 

  19. E. Sjostrom, “Wood Chemistry: Fundamentals and Applications”, 2nd ed. pp.1–248, Academic Press, Inc. Published by Elsevier Inc, San Diego, California, 1993.

    Book  Google Scholar 

  20. M. H. K. Darvanjooghi and M. N. Esfahany, Int. Commun. Heat. Mass., 77, 148 (2016).

    Article  Google Scholar 

  21. B. M. Cherian, L. A. Pothan, T. Nguyen-Chung, G. Mennig, M. Kottaisamy, and S. Thomas, J. Agric. Food. Chem., 56, 5617 (2008).

    Article  CAS  Google Scholar 

  22. Y. Isono and M. Nagasawa, Macromolecules, 13, 862 (1980).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tayebeh Behzad.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jahanbaani, A.R., Behzad, T., Borhani, S. et al. Electrospinning of cellulose nanofibers mat for laminated epoxy composite production. Fibers Polym 17, 1438–1448 (2016). https://doi.org/10.1007/s12221-016-6424-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6424-9

Keywords

Navigation