Fibers and Polymers

, Volume 17, Issue 8, pp 1245–1255 | Cite as

Sorption properties of iron impregnated activated carbon web for removal of methylene blue from aqueous media

  • Salman Naeem
  • Vijay Baheti
  • Jiri Militky
  • Jakub Wiener
  • Promoda Behera
  • Azeem Ashraf


In this study, impregnation of iron chloride was carried out on needle punched web of waste acrylic fibers, which was subsequently carbonized under layer of charcoal by physical activation in high temperature furnace to produce iron impregnated activated carbon (FeAC). For comparison purpose, one more sample of activated carbon (AC) was prepared without impregnation of iron chloride. Both the webs were carbonized at 1200 °C with no holding time, and characterization of BET surface area, SEM morphology, EDX elemental analysis, XRD crystalline structure was performed. The FeAC web was used as adsorbent for the removal of methylene blue from aqueous solution. The dye removal percentage was investigated at different experimental parameters like different dye concentrations, adsorbent dosage, stirring speed and different pH. The obtained results were analyzed using linear and non-linear forms of Langmuir and Freundlich isotherms and adsorption kinetics (i.e. pseudo first order and pseudo second order model).


Textile recycling Fibrous wastes Acrylic fibers Stabilization Carbonization Physical activation Activated carbon 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Slampova, D. Smela, A. Vondrackova, I. Jancarova, and V. Kuban, Chem. Listy, 95, 163 (2001).Google Scholar
  2. 2.
    S. Kertèsz, J. Cakl, and H. Jiránková, Desalination, 343, 106 (2014).CrossRefGoogle Scholar
  3. 3.
    P. Baskaralingam, M. Pulikesi, D. Elango, V. Ramamurthi, and S. Sivanesan, J. Hazard. Mater., 128, 138 (2006).CrossRefGoogle Scholar
  4. 4.
    V. K. Gupta, P. J. M. Carrott, M. M. L. RibeiroCarrott, and Suhas, Environ. Sci. Technol., 39, 783 (2009).CrossRefGoogle Scholar
  5. 5.
    E. L. Grabowska and G. Gryglewicz, Dyes Pigment., 74, 34 (2007).CrossRefGoogle Scholar
  6. 6.
    Z. Bouberka, A. Khenifi, F. Sekrane, N. Bettahar, and N. Derriche, Chem. Eng. J., 136, 295 (2008).CrossRefGoogle Scholar
  7. 7.
    V. K. Gupta, I. Ali, T. A. Saleh, and A. Nayak, RSC Adv., 2, 6380 (2012).CrossRefGoogle Scholar
  8. 8.
    H. Y. Shan, R. Malarvizhi, and N. Sulochana, J. Environ. Prot., 3, 111 (2009).Google Scholar
  9. 9.
    G. Ciardelli and N. Ranieri, Water Res., 35, 567 (2001).CrossRefGoogle Scholar
  10. 10.
    G. Zelmanov and R. Semiat, Desalination, 333, 107 (2014).CrossRefGoogle Scholar
  11. 11.
    R. C. Bansal, “Activated Carbon Adsorption”, 1st ed., pp.3–4, Taylor and Francis Group, London, 2005.CrossRefGoogle Scholar
  12. 12.
    C. Mangun, J. Barr, S. Riha, A. Lizzio, G. Donnals, and M. Daley, Carbon, 35, 411 (1997).CrossRefGoogle Scholar
  13. 13.
    M. Daley, R. Braatz, J. Economy, and C. Mangun, Carbon, 36, 123 (1998).CrossRefGoogle Scholar
  14. 14.
    M. Coleman and G. T. Sivy, Carbon, 19, 127 (1981).CrossRefGoogle Scholar
  15. 15.
    V. Baheti and J. Militky, Fiber. Polym., 14, 133 (2013).CrossRefGoogle Scholar
  16. 16.
    Q. Chang, W. Lin, and W. C. Ying, J. Hazard. Mater., 184, 515 (2010).CrossRefGoogle Scholar
  17. 17.
    I. Shah, R. Adnan, W. Ngah, and M. Norita, PLoS One, 10 (2015).Google Scholar
  18. 18.
    U. Gecgel, G. Ozcan, and G. C. Gurpinar, J. Chem., 2013, 1 (2013).CrossRefGoogle Scholar
  19. 19.
    I. Langmuir, J. Am. Chem. Soc., 40, 1361 (1918).CrossRefGoogle Scholar
  20. 20.
    H. Freundlich, Z. Phys. Chem., 57, 385 (1907).Google Scholar
  21. 21.
    K. D. Hristovski, P. K. Westerhoff, J. C. Crittenden, and L. W. Olson, Sep. Sci. Technol., 43, 3154 (2008).CrossRefGoogle Scholar
  22. 22.
    X. Chen, Y. P. Zheng, F. Kang, and W. C. Shen, J. Phys. Chem. Solids., 67, 1141 (2006).CrossRefGoogle Scholar
  23. 23.
    D. C. Sharma and C. F. Forster, Water Res., 27, 1201 (1993).CrossRefGoogle Scholar
  24. 24.
    C. Grégorio and P. M. Badot, “Sorption Processes and Pollution: Conventional and Non-conventional Sorbents for Pollutant Removal from Wastewaters”, p.43, Presses Universitaires de Franche-Comté, Besançon, 2010.Google Scholar
  25. 25.
    I. Shah, R. Adnan, W. Ngah, M. Norita, and Y. Taufiq, Bioresour. Technol., 16, 1551 (2014).Google Scholar
  26. 26.
    R. Baccar, P. Blánquez, J. Bouzid, M. Feki, and M. Sarrà, Chem. Eng. J., 165, 457 (2010).CrossRefGoogle Scholar
  27. 27.
    A. Demirbas, Energy Sources Part A., 31, 217 (2009).CrossRefGoogle Scholar
  28. 28.
    N. Basci, E. Kocadagistan, and B. Kocadagistan, Desalination, 164, 135 (2004).CrossRefGoogle Scholar
  29. 29.
    H. M. Kalavathy, T. Karthikeyan, S. Rajgopal, and L. Mirand, J. Colloid Interface Sci., 292, 354 (2005).CrossRefGoogle Scholar
  30. 30.
    V. K. Gupta and I. Ali, Sep. Purif. Technol., 18, 131 (2000).CrossRefGoogle Scholar
  31. 31.
    S. Aygün, Y. Karakas, and I. Duman, Microporous Mesoporous Mater., 66, 189 (2003).CrossRefGoogle Scholar
  32. 32.
    J. S. Macedo, N. B. Júnior, and L. E. Almeida, J. Colloid Interface Sci., 298, 515 (2006).CrossRefGoogle Scholar
  33. 33.
    D. Kavitha and C. Namasivayam, Bioresour. Technol., 98, 14 (2007).CrossRefGoogle Scholar
  34. 34.
    I. Shah, R. Ngah, N. Mohammed, and Y. Yap, Bioresource Technol., 160, 52 (2014).CrossRefGoogle Scholar
  35. 35.
    S. Naeem, V. Baheti, J. Wiener, and J. Marek, J. Text. Inst., DOI:10.1080/00405000.2016.1191745 (2016).Google Scholar
  36. 36.
    V. Baheti, S. Naeem, J. Militky, M. Okrasa, and B. Tomkova, Fiber. Polym., 16, 2193 (2015).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Salman Naeem
    • 1
  • Vijay Baheti
    • 1
  • Jiri Militky
    • 1
  • Jakub Wiener
    • 1
  • Promoda Behera
    • 1
  • Azeem Ashraf
    • 1
  1. 1.Department of Materials EngineeringFaculty of Textile Engineering, Technical University of LiberecLiberecCzech Republic

Personalised recommendations