Skip to main content

Porosity and nonwoven fabric vertical wicking rate


Fabric porosity is the result of fabric constructional parameters combination and used technology of nonwoven production. The effects of fabric porosity structure, as well as the content of hydrophilic viscose and hydrophobic polyester fibres in the web mixture, on the vertical wicking rate by nonwoven fabrics have been explored in this research. Fibrous webs with a different content of viscose and polyester fibres, with the web volume mass range of 0.019-0.035 g/cm3 were utilized during this study. The samples were produced using a dry-laid method of web forming and two methods of web bonding, e.g. needle punching and calendar bonding. Results show that higher volume porosity gives higher vertical wicking rate by all groups of tested samples regarding the content of used hydrophilic/hydrophobic fibres and that fluid flow is faster in samples with larger pores. The higher content of viscose fibres improve the vertical wicking rate, but better rising height can be achieved at samples made from 100 % of coarser polyester fibres. A prediction model of vertical wicking rate of viscose/ polyester nonwovens was developed on the basis of the fundamental constructional parameters of nonwoven fabrics (fibre fineness, type of raw material, and web density) and a non-deterministic modelling method, e.g. genetic algorithms, which can serve as a useful tool for fabric engineers by developing a nonwoven fabric in order to fit desired wicking rate.

This is a preview of subscription content, access via your institution.


  1. A. Chatterjee and P. Singh, J. Text., 2014, 1 (2014).

    CAS  Article  Google Scholar 

  2. B. Das, A. Das, V. Kothari, R. Fanguiero, and M. D. Araujo, J. Eng. Fiber Fabr., 4, 21 (2009).

    Google Scholar 

  3. K. Ghali, B. Jones, and J. Tracy, Text. Res. J., 64, 106 (1994).

    CAS  Article  Google Scholar 

  4. C. B. Simile, M.S. Dissertation, Georgia Institute of Technology, Atlanta, 2004.

    Google Scholar 

  5. E. Kissa, Text. Res. J., 66, 660 (1996).

    CAS  Article  Google Scholar 

  6. K. Dimitrovski, Tekstilec, 40, 5 (1997).

    Google Scholar 

  7. A. T. Purdy, “Needle-punching”, pp.1–15, The Textile Institute, Manchester, 1980.

    Google Scholar 

  8. J. Mao and S. J. Rusell, Text. Res. J., 73, 939 (2003).

    CAS  Article  Google Scholar 

  9. N. Pan and P. Gibson, “Thermal and Moisture Transport in Fibrous Materials”, 1st ed., pp.3–37, The Textile Institute Woodhead Publishing Limited and CRS Press LLC, Cambridge, 2006.

    Book  Google Scholar 

  10. X. Chen, F. Vroman, M. Lewandowski, and A. Perwuelz, Text. Res. J., 79, 1364 (2009).

    CAS  Article  Google Scholar 

  11. Y. Hsieh, Text. Res. J., 65, 299 (1995).

    CAS  Article  Google Scholar 

  12. V. Soukupova, L. Boguslavsky, and R. J. AnandiJiwala, Text. Res. J., 77, 301 (2007).

    CAS  Article  Google Scholar 

  13. P. V. Meeren, J. Cocquyt, S. Flores, H. Demeyere, and M. Declercq, Text. Res. J., 72, 423 (2002).

    Article  Google Scholar 

  14. P. D. Dubrovski, Text. Res. J., 70, 915 (2000).

    Article  Google Scholar 

  15. P. D. Dubrovski and M. Brezocnik, Fiber Polym., 13, 363 (2012).

    CAS  Article  Google Scholar 

  16. M. Brezocnik, M. Kovacic, and L. Gusel, Mater. Manuf. Process., 20, 497 (2005).

    CAS  Article  Google Scholar 

  17. “Porosimeter Pascal Instruction Manual”, 3rd ed., pp.6-19(Section 1), Thermo Electron Sp.A., Milan, 2004.

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to P. D. Dubrovski.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Dubrovski, P.D., Brezocnik, M. Porosity and nonwoven fabric vertical wicking rate. Fibers Polym 17, 801–808 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Predictive modelling
  • Nonwoven fabric constructional parameters
  • Porosity
  • Wicking rate