Skip to main content
Log in

Fabrication, Characterization and Antimicrobial property of natural TTOLs/CS composite sponges

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The essential oil liposomes, a kind of ecological friendly natural antibacterial agents, have good bactericidal effect. In the present study, tea tree oil liposomes (TTOLs) were prepared by the thin-membrane hydration method with sonication, and then were blended with chitosan (CS) to successfully fabricate novel TTOLs/CS composite sponges by freeze-dried method. Through the scanning electron microscope (SEM), fourier transform infrared spectroscopy (FTIR) and performance tests, it was found that the material had good water absorption, water retention and water vapor permeability due to the high porosity. Furthermore, the incorporation of TTOLs in the CS-based sponges significantly improved the microbicidel effect of the sponges against Staphylococcus aureus (S. aureus), Escherichia coli (E. coli) and Candida albicans (C. albicans). Killing log values of TTOLs/CS composite sponges against bacteria and fungi reached over 3. According to the microbial clearance test, propidium iodide (PI) fluorescence test and transmission electron microscope (TEM) observation, the results indicated on one hand that TTOLs/CS composite sponges adsorbed and intercepted microbial cells through the internal pore and surface charge, and on the other hand that they could destroy bacterial intercellular substance, disperse cell colony and damage the integrity of cell membrane, finally leading to the death of microbial cells. In summary, TTOLs/CS composite sponges had great potential to be used as antimicrobial materials in the field of food, cosmetics, medicine, biomedical and biochemical engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Ming, G. C. Xi, X. Ke, and H. J. Park, Int. J. Food Microbiol., 144, 51 (2010).

    Article  Google Scholar 

  2. Y. C. Chung, H. L. Wang, Y. M. Chen, and S. L. Li, Bioresour. Technol., 88, 179 (2003).

    Article  CAS  Google Scholar 

  3. P. Anaya, G. Cárdenas, V. Lavayen, A. García, and C. O'Dwyer, J. Appl. Polym. Sci., 128, 3939 (2013).

    Article  CAS  Google Scholar 

  4. S. Chen, Y. Hao, W. Cui, J. Chang, and Y. Zhou, J. Mater. Sci., 48, 6567 (2013).

    Article  CAS  Google Scholar 

  5. S. Guang, Y. An, F. Ke, D. Zhao, Y. Shen, and H. Xu, J. Appl. Polym. Sci., 132, 42503 (2015).

    Article  Google Scholar 

  6. T. Ikeda, K. Ikeda, K. Yamamoto, H. Ishizaki, Y. Yoshizawa, K. Yanagiguchi, S. Yamada, and Y. Hayashi, Biomed Res. Int., 2014, 786892 (2014).

    Article  Google Scholar 

  7. P. Kanmani and J. W. Rhim, Int. J. Biol. Macromol., 68, 258 (2014).

    Article  CAS  Google Scholar 

  8. D. Wisser, F. M. Wisser, S. Raschke, N. Klein, M. Leistner, J. Grothe, E. Brunner, and S. Kaskel, Angew. Chem. Int. Ed., 54, 12588 (2015).

    Article  CAS  Google Scholar 

  9. Y. Omura, M. Shigemoto, T. Akiyama, H. Saimoto, Y. Shigemasa, I. Nakamura, and T. Tsuchido, Biocontrol Sci., 8, 25 (2003).

    Article  CAS  Google Scholar 

  10. L. J. R. Foster and J. Butt, Biotechnol. Lett., 33, 417 (2011).

    Article  CAS  Google Scholar 

  11. L. Y. Zheng and J. F. Zhu, Carbohydr. Polym., 54, 527 (2003).

    Article  CAS  Google Scholar 

  12. C. Qin, H. Li, X. Qi, L. Yi, J. Zhu, and Y. Du, Carbohydr. Polym., 63, 367 (2006).

    Article  CAS  Google Scholar 

  13. Y. J. Jeon, P. J. Park, and S. K. Kim, Carbohydr. Polym., 44, 71 (2001).

    Article  CAS  Google Scholar 

  14. C. Juliano, C. Demurtas, and L. Piu, Flavour Frag. J., 23, 227 (2008).

    Article  Google Scholar 

  15. A. Regiel, S. Irusta, A. Kyziol, M. Arruebo, and J. Santamaria, Nanotechnology, 24, 015101 (2013).

    Article  Google Scholar 

  16. L. Hernandez-Ochoa, A. Gonzales-Gonzales, N. Gutierrez-Mendez, L. N. Munoz-Castellanos, and A. Quintero-Ramos, Rev. Mex. Ing. Quim., 10, 455 (2011).

    CAS  Google Scholar 

  17. S. Takenaka, E. Karg, C. Roth, H. Schulz, A. Ziesenis, U. Heinzmann, P. Schramel, and J. Heyder, Environ. Health Perspect., 109, 547 (2001).

    Article  CAS  Google Scholar 

  18. A. A. Hazani, M. M. Ibrahim, A. I. Shehata, G. A. El-Gaaly, M. Daoud, D. Fouad, H. Rizwana, and N. M. S. Moubayed, Arch. Biol. Sci., 65, 1447 (2013).

    Article  Google Scholar 

  19. Y. J. Lee, J. Kim, J. Oh, S. Bae, S. Lee, I. S. Hong, and S. H. Kim, Environ. Toxicol. Chem., 31, 155 (2012).

    Article  CAS  Google Scholar 

  20. K. A. Hammer, C. F. Carson, and T. V. Riley, J. Appl. Microbiol., 86, 985 (1999).

    Article  CAS  Google Scholar 

  21. C. F. Carson and T. V. Hammer Kariley, Clin. Microbiol. Rev., 19, 50 (2006).

    Article  CAS  Google Scholar 

  22. S. Cox, J. Gustafson, C. Mann, J. Markham, Y. Liew, R. Hartland, H. Bell, J. Warmington, and S. Wyllie, Lett. Appl. Microbiol., 26, 355 (1998).

    Article  CAS  Google Scholar 

  23. J. E. Gustafson, Y. C. Liew, S. Chew, J. Markham, H. C. Bell, S. G. Wyllie, and J. R. Warmington, Lett. Appl. Microbiol., 26, 194 (1998).

    Article  CAS  Google Scholar 

  24. S. D. Cox, C. M. Mann, J. L. Markham, H. C. Bell, J. E. Gustafson, J. R. Warmington, and S. G. Wyllie, J. Appl. Microbiol., 88, 170 (2000).

    Article  CAS  Google Scholar 

  25. M. Chen, Y. Hu, J. Zhou, Y. Xie, H. Wu, T. Yuan, and Z. Yang, Rsc Adv., 6, 13032 (2016).

    Article  CAS  Google Scholar 

  26. Y. Ge and M. Ge, Fiber. Polym., 16, 308 (2015).

    Article  CAS  Google Scholar 

  27. M. Y. Bai, T. C. Chou, J. C. Tsai, and W. C. Yu, J. Biomed. Mater. Res. A, 102, 2324 (2014).

    Article  Google Scholar 

  28. S. F. van Vuuren, L. C. du Toit, A. Parry, V. Pillay, and Y. E. Choonara, Nat. Prod. Commun., 5, 1401 (2010).

    Google Scholar 

  29. M. Sherry, C. Charcosset, H. Fessi, and H. Greigegerges, J. Liposome Res., 23, 268 (2013).

    Article  CAS  Google Scholar 

  30. Y. Ge and M. Q. Ge, J. Liposome Res., 25, 222 (2015).

    Article  CAS  Google Scholar 

  31. F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).

    Article  CAS  Google Scholar 

  32. L. H. Ma, W. T. Yu, and X. J. Ma, J. Appl. Polym. Sci., 106, 394 (2007).

    Article  CAS  Google Scholar 

  33. J. F. Fundo, A. C. Galvis-Sanchez, I. Delgadillo, C. L. M. Silva, and M. A. C. Quintas, Food Biophys., 10, 324 (2015).

    Article  Google Scholar 

  34. N. Sowasod, K. Nakagawa, W. Tanthapanichakoon, and T. Charinpanitkul, Mat. Sci. Eng. C-Mater., 32, 790 (2012).

    Article  CAS  Google Scholar 

  35. G. R. Lang and G. Buchbauer, Flavour Frag. J., 27, 13 (2012).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yan Ge.

Additional information

Yan Ge and Jiapeng Tang contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Tang, J. Fabrication, Characterization and Antimicrobial property of natural TTOLs/CS composite sponges. Fibers Polym 17, 862–872 (2016). https://doi.org/10.1007/s12221-016-6232-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6232-2

Keywords

Navigation