Skip to main content

Adaptive modeling method for 3-D printing with various polymer materials

Abstract

An adaptive modeling method has been developed to improve the accuracy of an FDM type 3-D printer especially when printing complex small objects. The thermal and flow properties of PLA, ABS, and HIPS were measured using various types of rheological analysis. The relationship between those results and dimensional errors were analyzed. From this relationship, calibration factors were calculated for correcting the error between virtual and actual models. Image processing software has been developed to measure the dimension of printed samples. A model generation software has been developed to generate calibrated models using adaptive modeling method. The efficiency of system was verified through statistical analysis on the difference between the models with and without calibration.

This is a preview of subscription content, access via your institution.

References

  1. 1.

    H. Li, G. Taylor, V. Bheemreddy, K. Chandrashekhara, O. Iyibilgin, and M. Leu, Addit. Manuf., 7, 64 (2015).

    Article  Google Scholar 

  2. 2.

    S. S. Crump, Proc. 2nd Int’l Conf. on Rapid Prototyping, p.354, 1991.

    Google Scholar 

  3. 3.

    P. Dudek, Arch. Metall. Mater., 58, 1415 (2013).

    CAS  Google Scholar 

  4. 4.

    L. Novakova-Marcincinova and J. Novak-Marcincin, World Acad. Sci. Eng. Technol., 6, 396 (2012).

    Google Scholar 

  5. 5.

    S. H. Ahn, M. Montero, D. Odell, S. Roundy, and P. K. Wright, Rapid Prototyping J., 8, 248 (2006).

    Article  Google Scholar 

  6. 6.

    B. N. Turner and S. A. Gold, Rapid Prototyping J., 21, 270 (2015).

    Article  Google Scholar 

  7. 7.

    E. C. Urquizo, S. Yang, and A. Bhaskar, IOP Conf. Series: Mater. Sci. Eng., 74 (2015).

  8. 8.

    S. Nelaturi and V. Shapiro, Comput. Aided Des., 67, 13 (2015).

    Article  Google Scholar 

  9. 9.

    M. Leary, T. Kron, C. Keller, R. Franich, P. Lonski, A. Subic, and M. Brandt, Mater. Des., 86, 487 (2015).

    CAS  Google Scholar 

  10. 10.

    D. Roberson, C. M. Shemelya, E. MacDonald, and R. Wicker, Rapid Prototyping J., 21, 137 (2015).

    Article  Google Scholar 

  11. 11.

    B. Huang and S. B. Singamneni, Rapid Prototyping J., 21, 354 (2015).

    Article  Google Scholar 

  12. 12.

    W. Cheng, J. Y. H. Fuh, A. Y. C. Nee, Y. S. Wong, H. T. Loh, and T. Miyazawa, Rapid Prototyping J., 1, 12 (1995).

    Article  Google Scholar 

  13. 13.

    R. D. Santis, U. D. Amora, T. Russo, A. Ronca, A. Gloria, and L. Ambrosio, J. Mater. Sci., 26, 250 (2015).

    Google Scholar 

  14. 14.

    C.Hull, US Patent, US4929402 A (1990).

  15. 15.

    F. P. W. Melchels, K. Bertoldi, R. Gabbrielli, A. H. Velders, J. Feijen, and D. W. Grijpma, Biomater., 31, 6909 (2010).

    CAS  Article  Google Scholar 

  16. 16.

    S. K. Tiwari, S. Pande, S. Agrawal, and S. M. Bobade, Rapid Prototyping J., 21, 630 (2015).

    Article  Google Scholar 

  17. 17.

    S. Cahill, S. Lohfeld, and P. McHugh, J. Mater. Sci., 20, 1255 (2009).

    CAS  Google Scholar 

  18. 18.

    S. Lohfeld, M. A. Tyndyk, S. Cahill, N. Flaherty, V. Barron, and P. E. McHugh, J. Mater. Sci., 3, 138 (2010).

    Google Scholar 

  19. 19.

    J. Domanski, K. Skalski, R. Grygoruk, and A. B. Mroz, Rapid Prototyping J., 21, 735 (2015).

    Article  Google Scholar 

  20. 20.

    K. Kellens, R. Renaldi, W. Dewulf, J. Kruth, and J. R. Duflou, Rapid Prototyping J., 20, 459 (2014).

    Article  Google Scholar 

  21. 21.

    C. Gomes, N. Travitzky, P. Greil, W. Acchar, H. Birol, A. Pedro Novaes de Oliveira, and D. Hotza, Rapid Prototyping J., 17, 424 (2011).

    Article  Google Scholar 

  22. 22.

    K. P. Karunakaran, A. Bernard, S. Suryakumar, L. Dembinski, and G. Taillandier, Rapid Prototyping J., 18, 264 (2012).

    Article  Google Scholar 

  23. 23.

    X. L. Yang, D. Wang, and D. M. Yu, Appl. Mech. Mater., 160, 165 (2012).

    Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Sungmin Kim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Choi, G., Kim, S. Adaptive modeling method for 3-D printing with various polymer materials. Fibers Polym 17, 977–983 (2016). https://doi.org/10.1007/s12221-016-6225-1

Download citation

Keywords

  • Adaptive modeling
  • 3-D printing
  • Fused deposition modeling
  • Polymer material
  • Image processing