Solution electrospinning of polypropylene-based fibers and their application in catalysis

Abstract

Since the dissolution of polyolefins is a chronic problem, melt processing has been tacitly accepted as an obligation. In this work, polypropylene (PP) was modified on molecular level incorporating poly(ethylene glycol) (PEG) as graft segment (PP-g-PEG) in a range of 6 to 9 mol%. Gold nanoparticles were nucleated in the presence of the copolymer chains via redox reaction. The dissolution of the amphiphilic comb-type graft copolymers containing gold nanoparticles (80 nm in diameter) was achieved in toluene and successfully electrospun from its solution. The diameter of composite fibers was in the range from 0.3 to 2.5 μm. The design of the structurally organized copolymer fiber mats provided a support medium for the nanoparticles enhancing the active surface area for the catalytic applications. The resulting composite fibers exhibited rapid catalytic reduction of methylene blue (MB) dye in the presence of sodium borohydride (NaBH4) compared to corresponding composite cast film.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    D. H. Reneker and I. Chun, Nanotechnol., 7, 216 (1996).

    CAS  Article  Google Scholar 

  2. 2.

    S. Agarwal, J. H. Wendorff, and A. Greiner, Macromol. Rapid Commun., 31, 1317 (2010).

    CAS  Article  Google Scholar 

  3. 3.

    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 909 (1981).

    CAS  Article  Google Scholar 

  4. 4.

    A. Noumowe, Cem. Concr. Res., 35, 2192 (2005).

    CAS  Article  Google Scholar 

  5. 5.

    J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995).

    CAS  Article  Google Scholar 

  6. 6.

    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 921 (1981).

    CAS  Article  Google Scholar 

  7. 7.

    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 933 (1981).

    CAS  Article  Google Scholar 

  8. 8.

    S. R. Givens, Macromol., 40, 608 (2007).

    CAS  Article  Google Scholar 

  9. 9.

    K. H. Lee, Macromol., 42, 5215 (2009).

    CAS  Article  Google Scholar 

  10. 10.

    D. M. Rein, J. Polym. Sci. Pt. B-Polym. Phys., 45, 766 (2007).

    CAS  Article  Google Scholar 

  11. 11.

    A. J. van Reenen and L. Keulder, Macromol. Mater. Eng., 295, 666 (2010).

    CAS  Article  Google Scholar 

  12. 12.

    N. Horzum, R. Munoz-Espi, G. Glasser, M. M. Demir, K. Landfester, and D. Crespy, ACS Appl. Mater. Interfaces, 4, 6338 (2012).

    CAS  Article  Google Scholar 

  13. 13.

    M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva, and M. G. Sulman, Macromol., 37, 1787 (2004).

    CAS  Article  Google Scholar 

  14. 14.

    D. Khushalani, S. Hasenzahl, and S. Mann, J. Nanosci. Nanotechnol., 1, 129 (2001).

    CAS  Article  Google Scholar 

  15. 15.

    J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem., Int. Ed., 38, 56 (1999).

    CAS  Article  Google Scholar 

  16. 16.

    L. M. Bronstein, S. Polarz, B. Smarsly, and M. Antonietti, Adv. Mater., 13, 1333 (2001).

    CAS  Article  Google Scholar 

  17. 17.

    M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram Soc., 83, 2385 (2000).

    CAS  Article  Google Scholar 

  18. 18.

    K. Chakrabarti and C. M. Whang, Mater. Sci. Eng., 88, 26 (2002).

    Article  Google Scholar 

  19. 19.

    M. P. Zheng, M. Y. Gu, Y. P. Jin, and G. L. Jin, Mater. Res. Bull., 36, 853 (2001).

    CAS  Article  Google Scholar 

  20. 20.

    S. Bharathi, M. Nogami, and S. Ikeda, Langmuir, 17, 7468 (2001).

    CAS  Article  Google Scholar 

  21. 21.

    L. Y. Li, X. B. Cao, F. Yu, Z. Y. Yao, and Y. Xie, J. Colloid Interface Sci., 261, 366 (2003).

    CAS  Article  Google Scholar 

  22. 22.

    Y. Matatov-Meytal and M. Sheintuch, Appl. Catal. A-Gen., 231, 1 (2002).

    CAS  Article  Google Scholar 

  23. 23.

    M. Balci, A. Alli, B. Hazer, O. Guven, K. Cavicchi, and M. Cakmak, Polym. Bull., 64, 691 (2010).

    CAS  Article  Google Scholar 

  24. 24.

    O. A. Kalayci, F. B. Coemert, B. Hazer, T. Atalay, K. A. Cavicchi, and M. Cakmak, Polym. Bull., 65, 215 (2010).

    CAS  Article  Google Scholar 

  25. 25.

    D. B. Hazer, B. Hazer, and N. Dincer, Biomed. Biotechnol., 2011, 1 (2011).

    Article  Google Scholar 

  26. 26.

    D. B. Hazer, M. Mut, N. Dincer, Z. Saribas, B. Hazer, and T. Ozgen, Childs Nerv. Syst., 28, 839 (2012).

    Article  Google Scholar 

  27. 27.

    O. A. Kalayci, O. Duygulu, and B. Hazer, J. Nanopart. Res., 15, 1 (2013).

    Article  Google Scholar 

  28. 28.

    M. S. Kilic, S. Korkut, B. Hazer, and E. Erhan, Biosens. Bioelectron., 61, 500 (2014).

    CAS  Article  Google Scholar 

  29. 29.

    M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, Adv. Mater., 17, 1331 (2005).

    CAS  Article  Google Scholar 

  30. 30.

    S. Tuzuner and M. M. Demir, Mater. Chem. Phys., 162, 692 (2015).

    CAS  Article  Google Scholar 

  31. 31.

    C. Saldías, Á. Leiva, S. Bonardd, C. Quezada, S. Saldías, M. Pino, and D. Radic, React. Funct. Polym., 96, 78 (2015).

    Article  Google Scholar 

  32. 32.

    A. M. El-Rafei, Ceram. Int. B., 41, 12065 (2015).

    CAS  Article  Google Scholar 

  33. 33.

    M. M. Demir, G. Ugur, M. A. Gulgun, and Y. Z. Menceloglu, Macromol. Chem. Phys., 209, 508 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mustafa M. Demir.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Berber, E., Horzum, N., Hazer, B. et al. Solution electrospinning of polypropylene-based fibers and their application in catalysis. Fibers Polym 17, 760–768 (2016). https://doi.org/10.1007/s12221-016-6183-7

Download citation

Keywords

  • Catalysis
  • Comb-type amphiphilic polymer
  • Electrospinning
  • Gold nanoparticles
  • Grafting