Advertisement

Fibers and Polymers

, Volume 17, Issue 5, pp 760–768 | Cite as

Solution electrospinning of polypropylene-based fibers and their application in catalysis

  • Emine Berber
  • Nesrin Horzum
  • Baki Hazer
  • Mustafa M. DemirEmail author
Article

Abstract

Since the dissolution of polyolefins is a chronic problem, melt processing has been tacitly accepted as an obligation. In this work, polypropylene (PP) was modified on molecular level incorporating poly(ethylene glycol) (PEG) as graft segment (PP-g-PEG) in a range of 6 to 9 mol%. Gold nanoparticles were nucleated in the presence of the copolymer chains via redox reaction. The dissolution of the amphiphilic comb-type graft copolymers containing gold nanoparticles (80 nm in diameter) was achieved in toluene and successfully electrospun from its solution. The diameter of composite fibers was in the range from 0.3 to 2.5 μm. The design of the structurally organized copolymer fiber mats provided a support medium for the nanoparticles enhancing the active surface area for the catalytic applications. The resulting composite fibers exhibited rapid catalytic reduction of methylene blue (MB) dye in the presence of sodium borohydride (NaBH4) compared to corresponding composite cast film.

Keywords

Catalysis Comb-type amphiphilic polymer Electrospinning Gold nanoparticles Grafting 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    D. H. Reneker and I. Chun, Nanotechnol., 7, 216 (1996).CrossRefGoogle Scholar
  2. 2.
    S. Agarwal, J. H. Wendorff, and A. Greiner, Macromol. Rapid Commun., 31, 1317 (2010).CrossRefGoogle Scholar
  3. 3.
    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 909 (1981).CrossRefGoogle Scholar
  4. 4.
    A. Noumowe, Cem. Concr. Res., 35, 2192 (2005).CrossRefGoogle Scholar
  5. 5.
    J. Doshi and D. H. Reneker, J. Electrost., 35, 151 (1995).CrossRefGoogle Scholar
  6. 6.
    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 921 (1981).CrossRefGoogle Scholar
  7. 7.
    L. Larrondo and R. S. J. Manley, J. Polym. Sci. Pt. BPolym. Phys., 19, 933 (1981).CrossRefGoogle Scholar
  8. 8.
    S. R. Givens, Macromol., 40, 608 (2007).CrossRefGoogle Scholar
  9. 9.
    K. H. Lee, Macromol., 42, 5215 (2009).CrossRefGoogle Scholar
  10. 10.
    D. M. Rein, J. Polym. Sci. Pt. B-Polym. Phys., 45, 766 (2007).CrossRefGoogle Scholar
  11. 11.
    A. J. van Reenen and L. Keulder, Macromol. Mater. Eng., 295, 666 (2010).CrossRefGoogle Scholar
  12. 12.
    N. Horzum, R. Munoz-Espi, G. Glasser, M. M. Demir, K. Landfester, and D. Crespy, ACS Appl. Mater. Interfaces, 4, 6338 (2012).CrossRefGoogle Scholar
  13. 13.
    M. M. Demir, M. A. Gulgun, Y. Z. Menceloglu, B. Erman, S. S. Abramchuk, E. E. Makhaeva, A. R. Khokhlov, V. G. Matveeva, and M. G. Sulman, Macromol., 37, 1787 (2004).CrossRefGoogle Scholar
  14. 14.
    D. Khushalani, S. Hasenzahl, and S. Mann, J. Nanosci. Nanotechnol., 1, 129 (2001).CrossRefGoogle Scholar
  15. 15.
    J. Y. Ying, C. P. Mehnert, and M. S. Wong, Angew. Chem., Int. Ed., 38, 56 (1999).CrossRefGoogle Scholar
  16. 16.
    L. M. Bronstein, S. Polarz, B. Smarsly, and M. Antonietti, Adv. Mater., 13, 1333 (2001).CrossRefGoogle Scholar
  17. 17.
    M. Epifani, C. Giannini, L. Tapfer, and L. Vasanelli, J. Am. Ceram Soc., 83, 2385 (2000).CrossRefGoogle Scholar
  18. 18.
    K. Chakrabarti and C. M. Whang, Mater. Sci. Eng., 88, 26 (2002).CrossRefGoogle Scholar
  19. 19.
    M. P. Zheng, M. Y. Gu, Y. P. Jin, and G. L. Jin, Mater. Res. Bull., 36, 853 (2001).CrossRefGoogle Scholar
  20. 20.
    S. Bharathi, M. Nogami, and S. Ikeda, Langmuir, 17, 7468 (2001).CrossRefGoogle Scholar
  21. 21.
    L. Y. Li, X. B. Cao, F. Yu, Z. Y. Yao, and Y. Xie, J. Colloid Interface Sci., 261, 366 (2003).CrossRefGoogle Scholar
  22. 22.
    Y. Matatov-Meytal and M. Sheintuch, Appl. Catal. A-Gen., 231, 1 (2002).CrossRefGoogle Scholar
  23. 23.
    M. Balci, A. Alli, B. Hazer, O. Guven, K. Cavicchi, and M. Cakmak, Polym. Bull., 64, 691 (2010).CrossRefGoogle Scholar
  24. 24.
    O. A. Kalayci, F. B. Coemert, B. Hazer, T. Atalay, K. A. Cavicchi, and M. Cakmak, Polym. Bull., 65, 215 (2010).CrossRefGoogle Scholar
  25. 25.
    D. B. Hazer, B. Hazer, and N. Dincer, Biomed. Biotechnol., 2011, 1 (2011).CrossRefGoogle Scholar
  26. 26.
    D. B. Hazer, M. Mut, N. Dincer, Z. Saribas, B. Hazer, and T. Ozgen, Childs Nerv. Syst., 28, 839 (2012).CrossRefGoogle Scholar
  27. 27.
    O. A. Kalayci, O. Duygulu, and B. Hazer, J. Nanopart. Res., 15, 1 (2013).CrossRefGoogle Scholar
  28. 28.
    M. S. Kilic, S. Korkut, B. Hazer, and E. Erhan, Biosens. Bioelectron., 61, 500 (2014).CrossRefGoogle Scholar
  29. 29.
    M. R. Bockstaller, R. A. Mickiewicz, and E. L. Thomas, Adv. Mater., 17, 1331 (2005).CrossRefGoogle Scholar
  30. 30.
    S. Tuzuner and M. M. Demir, Mater. Chem. Phys., 162, 692 (2015).CrossRefGoogle Scholar
  31. 31.
    C. Saldías, Á. Leiva, S. Bonardd, C. Quezada, S. Saldías, M. Pino, and D. Radic, React. Funct. Polym., 96, 78 (2015).CrossRefGoogle Scholar
  32. 32.
    A. M. El-Rafei, Ceram. Int. B., 41, 12065 (2015).CrossRefGoogle Scholar
  33. 33.
    M. M. Demir, G. Ugur, M. A. Gulgun, and Y. Z. Menceloglu, Macromol. Chem. Phys., 209, 508 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2016

Authors and Affiliations

  • Emine Berber
    • 1
  • Nesrin Horzum
    • 2
  • Baki Hazer
    • 3
  • Mustafa M. Demir
    • 4
    Email author
  1. 1.Department of Biotechnology and Bioengineering, Faculty of EngineeringIzmir Institute of TechnologyİzmirTurkey
  2. 2.Department of Engineering Sciences, Faculty of Engineering and ArchitectureIzmir Katip Çelebi UniversityİzmirTurkey
  3. 3.Department of Chemistry, Faculty of Science and LettersBülent Ecevit UniversityZonguldakTurkey
  4. 4.Department of Materials Science and Engineering, Faculty of EngineeringIzmir Institute of TechnologyİzmirTurkey

Personalised recommendations