Skip to main content
Log in

Weibull distribution analysis of the tensile strength of the kenaf bast fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This paper presents the influence of the gage length on the kenaf fiber Young’s modulus and the tensile strength characterization. Four different gage lengths of 10 mm, 15 mm, 20 mm and 25.4 mm are selected in this study and the tensile testing is performed at a quasi-static loading rate of 1 mm/min. The cross-sectional area of the fiber after failure is considered for the stress calculations. Weibull probability distribution is used to characterize the tensile strength of the kenaf fiber. The Weibull parameters are obtained for the two parameter, three parameter and Weibull of Weibull models and the average tensile strength of the fibers are evaluated. The predicted average tensile strength from all the three approaches are in good agreement with the experimental results for the obtained parameters.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. V. Joshi, L. T. Drzal, A. K. Mohanty, and S. Arora, Compos. Pt. A-Appl. Sci. Manuf., 35, 371 (2004).

    Article  Google Scholar 

  2. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    Article  CAS  Google Scholar 

  3. O. Faruk, A. K. Bledzki, H. P. Fink, and M. Sain, Prog. Polym. Sci., 37, 1552 (2012).

    Article  CAS  Google Scholar 

  4. S. Ochi, SRX Mater. Sci., 2010, 6 (2009).

    Google Scholar 

  5. Y. Xue, Y. Du, S. Elder, K. Wang, and J. Zhang, Compos. Pt. B-Eng., 40, 189 (2009).

    Article  Google Scholar 

  6. M. C. Symington, W. M. Banks, D. West, and R. A. Pethrick, J. Compos. Mater., 43, 1083 (2009).

    Article  CAS  Google Scholar 

  7. S. John, P. J. D. Nilmini, S. V. Amandeep, and W. Hall, Compos. Pt. A-Appl. Sci. Manuf., 41, 1329 (2010).

    Article  Google Scholar 

  8. H. Ku, H. Wang, N. Pattarachaiyakoop, and M. Trada, Compos. Pt. B-Eng., 42, 856 (2011).

    Article  Google Scholar 

  9. K. Naito, J. M. Yang, Y. Tanaka, and Y. Kagawa, J. Mater. Sci., 47, 632 (2012).

    Article  CAS  Google Scholar 

  10. F. de Andrade Silva, N. Chawla, and R. D. de Toledo Filho, Compos. Sci. Technol., 68, 3438 (2008).

    Article  Google Scholar 

  11. W. Weibull, J. Appl. Mech., 103 (1951).

  12. N. Pan, H. C. Chen, J. Thompson, M. K. Inglesby, S. Khatua, X. S. Zhang, and S. H. Zeronian, J. Mater. Sci., 32, 2677 (1997).

    Article  CAS  Google Scholar 

  13. L. C. Pardini and L. G. B. Manhani, Mater. Res., 5, 411 (2002).

    Article  CAS  Google Scholar 

  14. Y. Zhang, X. Wang, N. Pan, and R. Postle, J. Mater. Sci., 37, 1401 (2002).

    Article  CAS  Google Scholar 

  15. F. Wang and J. Shao, Polymers, 6, 3005 (2014).

    Article  CAS  Google Scholar 

  16. Y. T. Zhu, W. R. Blumenthal, S. T. Taylor, T. C. Lowe, and B. Zhou, J. Am. Ceram. Soc., 80, 1447 (1997).

    Article  CAS  Google Scholar 

  17. W. A. Curtin, J. Compos. Mater., 34, 1301 (2000).

    Article  CAS  Google Scholar 

  18. ASTM D3822 -Standard Test Method for Tensile Properties of Single Textile Fibers, 2007.

  19. H. W. Coleman and W. G. Steele, “Experimentation, Validation, and Uncertainty Analysis for Engineers”, 3rd ed., pp.62–65, John Wiley & Sons Inc., Hoboken, New Jersey, 2009.

    Book  Google Scholar 

  20. M. De Santo, C. Liguori, A. Paolillo, and A. Pietrosanto, Measurement, 36, 347 (2004).

    Article  Google Scholar 

  21. Z. P. Xia, J. Y. Yu, L. D. Cheng, L. F. Liu, and W. M. Wang, Compos. Pt. A-Appl. Sci. Manuf., 40, 54 (2009).

    Article  Google Scholar 

  22. D. Wu, J. Zhou, and Y. Li, J. Mater. Sci., 41, 5630 (2006).

    Article  CAS  Google Scholar 

  23. J. Andersons, E. Sparnins, R. Joffe, and L. Wallström, Compos. Sci. Technol., 65, 693 (2005).

    Article  CAS  Google Scholar 

  24. UNCERT, C., “7: 2000-Gabauer, W., Manual of Codes of Practice for the Determination of Uncertainties in Mechanical Tests on Metallic Materials, The Determination of Uncertainties in Tensile Testing, Project, No”, Tech. rep., SMT4-CT97-2165, 2000.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dayakar L. Naik.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Naik, D.L., Fronk, T.H. Weibull distribution analysis of the tensile strength of the kenaf bast fiber. Fibers Polym 17, 1696–1701 (2016). https://doi.org/10.1007/s12221-016-6176-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6176-6

Keywords

Navigation