Skip to main content
Log in

Electrospinning of polycaprolatone nanofibers with DMF additive: The effect of solution proprieties on jet perturbation and fiber morphologies

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Electrospinning is a straightforward method to produce sub-micrometer or nanoscale fiber. Polycaprolactone (PCL), an important polymer in biomedical applications, has been electrospun in several solvent systems. N,Ndimethylformamide (DMF) is often used as an additive in the solvent system to prepare PCL nanofibers. The adding of the DMF changes the physical properties of the solution. To trace and understand the influence of these changes on the jet formation as well as the resultant fibers morphologies, a model of jet perturbation based on the Plateau-Rayleigh Instability theory was established to explicate the formation of the particles/fibers and some experiments for testing the solution properties and fibers morphologies were carried out. With the adding of DMF in dichloromethane (DCM)/DMF mixed solvents, the solution surface tensions increase while solution viscosities decrease, which triggers the change of electrospinning to electrospraying in general. However, according to the obtained results, the addition of the DMF makes it easier to induce the transformation of particles electrospraying to fibers electrospinning with smaller diameter. This is attributed to the higher dielectric constant, lower vapor pressure, and higher electric conductivity of DMF. The theoretical model and experimental results strengthen the relations of solution properties, jet moving behaviors, and the resultant fiber morphologies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Li and Y. N. Xia, Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  2. M. Norouzi, I. Shabani, F. Atyabi, and M. Soleimani, Fiber. Polym., 16, 782 (2015).

    Article  CAS  Google Scholar 

  3. M. Sadri, S. Arab-Sorkhi, H. Vatani, and A. Bagheri-Pebdeni, Fiber. Polym., 16, 1742 (2015).

    Article  CAS  Google Scholar 

  4. X. L. Hu, S. Liu, G. Y. Zhou, Y. B. Huang, Z. G. Xie, and X. B. Jing, J. Control. Release, 185, 12 (2014).

    Article  CAS  Google Scholar 

  5. F. E. Ahmed, B. S. Lalia, and R. Hashaikeh, Desalination, 356, 15 (2015).

    Article  CAS  Google Scholar 

  6. L. Y. Kong and G. R. Ziegler, Biomacromolecules, 13, 2247 (2012).

    Article  CAS  Google Scholar 

  7. W. Wei, J. T. Yeh, P. Li, M. R. Li, W. Li, and X. L. Wang, J. Appl. Polym. Sci., 118, 3005 (2010).

    Article  CAS  Google Scholar 

  8. J. J. Feng, J. Non-Newtonian Fluid Mech., 116, 55 (2003).

    Article  CAS  Google Scholar 

  9. M. G. McKee, G. L. Wilkes, R. H. Colby, and T. E. Long, Macromolecules, 37, 1760 (2004).

    Article  CAS  Google Scholar 

  10. P. Gupta, C. Elkins, T. E. Long, and G. L. Wilkes, Polymer, 46, 4799 (2005).

    Article  CAS  Google Scholar 

  11. W. K. Son, J. H. Youk, T. S. Lee, and W. H. Park, Polymer, 45, 2959 (2004).

    Article  CAS  Google Scholar 

  12. L. W. Xue, L. X. Mao, Q. Cai, X. P. Yang, and R. G. Jin, Polym. Adv. Technol., 22, 2009 (2011).

    Article  CAS  Google Scholar 

  13. C. J. Luo, M. Nangrejo, and M. Edirisinghe, Polymer, 51, 1654 (2010).

    Article  CAS  Google Scholar 

  14. S. L. Shenoy, W. D. Bates, and G. Wnek, Polymer, 46, 8990 (2005).

    Article  CAS  Google Scholar 

  15. M. Nouri, J. Mokhtari, and M. Rostamloo, Fiber. Polym., 14, 957 (2013).

    Article  CAS  Google Scholar 

  16. B. Azimi, P. Nourpanah, M. Rabiee, and S. Arbab, J. Eng. Fiber. Fabr., 9, 74 (2014).

    CAS  Google Scholar 

  17. A. Doustgani, Text. Res. J., 85, 1445 (2015).

    Article  CAS  Google Scholar 

  18. C. J. Luo, E. Stride, and M. Edirisinghe, Macromolecules, 45, 4669 (2012).

    Article  CAS  Google Scholar 

  19. M. F. Canbolat, A. Celebioglu, and T. Uyar, Colloid Surf. B-Biointerfaces, 115, 15 (2014).

    Article  CAS  Google Scholar 

  20. F. Croisier, A. S. Duwez, C. Jérôme, A. F. Léonard, K. O. van der Werf, P. J. Dijkstra, and M. L. Bennink, Acta Biomater., 8, 218 (2012).

    Article  CAS  Google Scholar 

  21. C. Y. Wan and B. Q. Chen, Biomed. Mater., 6, 1 (2011).

    Article  Google Scholar 

  22. K. H. Lee, H. Y. Kim, M. S. Khil, Y. M. Ra, and D. R. Lee, Polymer, 44, 1287 (2003).

    Article  CAS  Google Scholar 

  23. S. G. Hong and G. H. Kim, Bioprocess Biosyst. Eng., 36, 205 (2013).

    Article  CAS  Google Scholar 

  24. A. Bhattacharya and P. Ray, J. Appl. Polym. Sci., 93, 122 (2004).

    Article  CAS  Google Scholar 

  25. P. Wang and A. Anderko, Fluid Phase Equilibr., 186, 103 (2001).

    Article  CAS  Google Scholar 

  26. J. G. Kirkwood, J. Chem. Phys., 7, 911 (1939).

    Article  CAS  Google Scholar 

  27. G. C. Rutledge and S. V. Fridrikh, Adv. Drug Deliv. Rev., 59, 1384 (2007).

    Article  CAS  Google Scholar 

  28. P. G. de Gennes, F. Brochard-Wyart, and D. Quéré, “Capillarity and Wetting Phenomena Drops, Bubbles, Pearls, Waves”, pp.111–120, Springer, New York, 2004.

    Book  Google Scholar 

  29. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  30. A. Baji, Y. W. Mai, S. C. Wong, M. Abtahi, and P. Chen, Compos. Sci. Technol., 70, 703 (2010).

    Article  CAS  Google Scholar 

  31. W. M. Chang, C. C. Wang, and C. Y. Chen, Chem. Eng. J., 244, 540 (2014).

    Article  CAS  Google Scholar 

  32. J. Y. Lin, B. Ding, J. Y. Yu, and Y. Hsieh, ACS Appl. Mater. Interfaces, 2, 521 (2010).

    Article  CAS  Google Scholar 

  33. Y. Lu, Y. Li, S. Zhang, G. J. Xu, K. Fu, H. Lee, and X. W. Zhang, Eur. Polym. J., 49, 3834 (2013).

    Article  CAS  Google Scholar 

  34. A. Abbasi, M. M. Nasef, M. Takeshi, and R. Faridi-Majidi, Chinese J. Polym. Sci., 32, 793 (2014).

    Article  CAS  Google Scholar 

  35. C. J. Luo and M. Edirisinghed, Macromolecules, 47, 7930 (2014).

    Article  CAS  Google Scholar 

  36. C. H. Park, N. O. Chung, and J. Lee, J. Colloid Interface Sci., 361, 423 (2011).

    Article  CAS  Google Scholar 

  37. L. Gong, D. B. Chase, I. Noda, J. L. Liu, D. C. Martin, C. Y. Ni, and J. F. Rabolt, Macromolecules, 48, 6197 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fengyuan Zou.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Du, L., Xu, H., Zhang, Y. et al. Electrospinning of polycaprolatone nanofibers with DMF additive: The effect of solution proprieties on jet perturbation and fiber morphologies. Fibers Polym 17, 751–759 (2016). https://doi.org/10.1007/s12221-016-6045-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6045-3

Keywords

Navigation