Skip to main content
Log in

Hydrophilic surface modification of DPVC nanofibrous membrane by free-radical graft polymerization

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

We introduced a novelty and mild method for preparing four different hydrophilic polymers (PVP, PAA, PDMAEMA, and PAM) grafted to DPVC fibrous membrane surface. To increase active sites and improve the grafting efficiency of hydrophilic polymer on PVC membrane, PVC resin was slightly dehydrochlorinated, forming a few conjugated double bonds. A minor reduction in the DPVC average molecular weight in a short dehydrochlorination time exerted minimal influence on the DPVC electrospinning process and fiber morphology. Results of ATR-Fourier transform infrared spectroscopy (ATR-FTIR), X-ray photoelectron spectroscopy (XPS), and surface wettability of modified membranes proved that hydrophilic polymers were successfully grafted covalently on the surface of the DPVC nanofibrous membrane. The hydrophilicity of the modified DPVC fibrous membrane was evidently improved. This hydrophilic DPVC fibrous membrane may fulfill potential requirements in tissue engineering and wastewater treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. H. Wendorff, S. Agarwal, and A. Greiner, “Electrospinning: Materials, Processing, and Applications”, pp.1–27, Wiley-VCH, Singapore, 2012.

    Book  Google Scholar 

  2. R. Asmatulu, H. Muppalla, Z. Veisi, W. S. Khan, A. Asaduzzaman, and N. Nuraje, Membranes, 3, 375 (2013).

    Article  Google Scholar 

  3. S. Kidoaki, I. K. Kwon, and T. Matsuda, Biomaterials, 26, 37 (2005).

    Article  CAS  Google Scholar 

  4. C. M. Vaz, S. V. Tuijl, C. V. C. Bouten, and F. P. T. Baaijens, Acta Biomater., 1, 575 (2005).

    Article  CAS  Google Scholar 

  5. Y. Jin, D. Z. Yang, Y. S. Zhou, G. P. Ma, and J. Nie, J. Appl. Polym. Sci., 109, 3337 (2008).

    Article  CAS  Google Scholar 

  6. T. Courtney, M. S. Sacks, J. Stankus, J. J. Guan, and W. R. Wagner, Biomaterials, 27, 3631 (2006).

    CAS  Google Scholar 

  7. K. H. Lee, H. Y. Kim, Y. M. La, D. R. Lee, and N. H. Sung, J. Polym. Sci. Pt. B-Polym. Phys., 40, 2259 (2002).

    Article  CAS  Google Scholar 

  8. B. Balakrishnan, D. S. Kumar, Y. Yoshida, and A. Jayakrishnan, Biomaterials, 26, 3495 (2005).

    Article  CAS  Google Scholar 

  9. A. Greiner and J. H. Wendorff, Angew. Chem. Int. Edit., 46, 5670 (2007).

    Article  CAS  Google Scholar 

  10. Z. Zhong, Q. Cao, B. Jing, S. Li, and X. Y. Wang, Ionics, 18, 853 (2012).

    Article  CAS  Google Scholar 

  11. G. Singh, D. Rana, T. Matsuura, S. Ramakrishna, R. M. Narbaitz, and S. Tabe, Sep. Purif. Technol., 74, 202 (2010).

    Article  Google Scholar 

  12. Y. Tian, M. Wu, R. G. Liu, Y. X. Li, D. Q. Wang, J. J. Tan, R. C. Wu, and Y. Huang, Carbohydr. Polym., 83, 743 (2011).

    Article  CAS  Google Scholar 

  13. S. Haider and S. Y. Park, J. Membr. Sci., 328, 90 (2009).

    Article  CAS  Google Scholar 

  14. P. Kampalanonwat and P. Supaphol, Ind. Eng. Chem. Res., 50, 11912 (2011).

    Article  CAS  Google Scholar 

  15. C. L. Wu, H. Y. Wang, Z. Wei, C. Li, and Z. D. Luo, Appl. Surf. Sci., 346, 207 (2015).

    Article  CAS  Google Scholar 

  16. S. Moulay, Prog. Polym. Sci., 35, 303 (2010).

    Article  CAS  Google Scholar 

  17. H. J. Wang, H. Y. Wang, K. Chen, Y. M. Song, and Z. Wei, J. Appl. Polym. Sci., 132, 41535 (2015).

    Google Scholar 

  18. N. Hilal, H. Al-Zoubi, N. A. Darwish, A. W. Mohamma, and M. A. Arabi, Desalination, 170, 281 (2004).

    Article  CAS  Google Scholar 

  19. A. S. Hoffman, Ann. NY. Acad. Sci., 62, 944 (2001).

    Google Scholar 

  20. H. Y. Wang, Y. K. Feng, Z. C. Fang, W. J. Yuan, and M. Khan, Mater. Sci. Eng. C-Mater. Biol. Appl., 32, 2306 (2012).

    Article  CAS  Google Scholar 

  21. J. L. Audic, F. Poncin-Epaillard, D. Reyx, and J. C. Brosse, J. Appl. Polym. Sci., 79, 1384 (2001).

    Article  CAS  Google Scholar 

  22. H. Savoji, D. Rana, T. Matsuura, S. Tabe, and C. Y. Feng, Sep. Purif. Technol., 108, 196 (2013).

    Article  CAS  Google Scholar 

  23. K. M. McGinty and W. J. Brittain, Polymer, 49, 4350 (2008).

    Article  CAS  Google Scholar 

  24. A. Jayakrishnan and M. C. Sunny, Polymer, 37, 5213 (1996).

    Article  CAS  Google Scholar 

  25. M. Coskun, G. Barim, and K. Demirelli, J. Macromol. Sci. A, 44, 475 (2007).

    Article  CAS  Google Scholar 

  26. J. Behnisch and H. Zimmermann, Int. J. Polym. Mater., 16, 143 (1992).

    Article  CAS  Google Scholar 

  27. K. Webb, V. Hlady, and P. A. Tresco, J. Biomed. Mater. Res., 41, 422 (1998).

    Article  CAS  Google Scholar 

  28. D. Rana, K. Cho, T. Woo, B. H. Lee, and S. Choe, J. Appl. Polym. Sci., 74, 1169 (1999).

    Article  CAS  Google Scholar 

  29. D. Rana, H. L. Kim, H. Kwag, and S. Choe, Polymer, 41, 7067 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhong Wei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, C., Wang, H., Wu, C. et al. Hydrophilic surface modification of DPVC nanofibrous membrane by free-radical graft polymerization. Fibers Polym 17, 663–670 (2016). https://doi.org/10.1007/s12221-016-6007-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-6007-9

Keywords

Navigation