Skip to main content
Log in

Effects of surface treatments on Mechanical properties of Continuous basalt fibre cords and their Adhesion with rubber matrix

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

To improve the mechanical properties and the adhesion to a natural rubber (NR)/styrene-butadiene rubber (SBR) matrix, continuous basalt fibre (CBF) cords with and without a silane coupling agent (3-aminopropyl)triethoxysilane (KH550) treatment were dipped into a typical resorcinol-formaldehyde-latex (RFL) system. The breaking force and elongation at break of the cords were tested using a universal testing machine. The adhesive properties were evaluated by both static mode and dynamic (fatigue) mode with H-shape cord-rubber samples. An elastomer testing system was employed to conduct the fatigue test, and the evolution of the adhesive properties between the CBF cord and the NR/SBR matrix was tracked. The interfacial fracture caused by H pull out and fatigue were both observed with a scanning electron microscope (SEM). The results of this investigation show that the RFL-dipping treatment can significantly improve the mechanical properties of the CBF cord and its adhesion to the NR/SBR matrix, and the pre-treatment of the CBF cord with KH550 can further improve the interfacial fatigue property.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. V. Fiore, T. Scalici, G. Di Bella, and A. Valenza, Compos. Pt. B-Eng., 74, 74 (2015).

    Article  CAS  Google Scholar 

  2. V. Lopresto, C. Leone, and I. De Iorio, Compos. Pt. BEng., 42, 717 (2011).

    Article  Google Scholar 

  3. A. Greco, A. Maffezzoli, G. Casciaro, and F. Caretto, Compos. Pt. B-Eng., 67, 233 (2014).

    Article  CAS  Google Scholar 

  4. M. Jamshidi and F. A. Taromi, J. Adhes. Sci. Technol., 20, 1693 (2006).

    Article  CAS  Google Scholar 

  5. V. Manikandan, J. T. W. Jappes, S. M. S. Kumar, and P. Amuthakkannan, Compos. Pt. B-Eng., 43, 812 (2012).

    Article  CAS  Google Scholar 

  6. J. M. Espana, M. D. Samper, E. Fages, L. Sanchez-Nacher, and R. Balart, Polym. Compos., 34, 376 (2013).

    Article  CAS  Google Scholar 

  7. B. Wei, H. L. Cao, and S. H. Song, Compos. Pt. A-Appl. Sci. Manuf., 42, 22 (2011).

    Article  Google Scholar 

  8. G. J. Wang, Y. W. Liu, Y. J. Guo, Z. X. Zhang, M. X. Xu, and Z. X. Yang, Surf. Coat. Technol., 201, 6565 (2007).

    Article  CAS  Google Scholar 

  9. T. S. Solomon, Rubber Chem. Technol., 58, 561 (1985).

    Article  CAS  Google Scholar 

  10. G. R. Hamed and C. Ruksakulpiwat, J. Appl. Polym. Sci., 91, 1993 (2004).

    Article  CAS  Google Scholar 

  11. G. Gillberg, L. C. Sawyer, and A. L. Promislow, J. Appl. Polym. Sci., 28, 3723 (1983).

    Article  CAS  Google Scholar 

  12. M. Shirazi, M. B. de Rooij, A. G. Talma, and J. W. M. Noordermeer, J. Adhes. Sci. Technol., 27, 1886 (2013).

    Article  CAS  Google Scholar 

  13. W. B. Wennekes, R. N. Datta, and J. W. M. Noordermeer, Rubber Chem. Technol., 81, 523 (2008).

    Article  CAS  Google Scholar 

  14. M. Shirazi, A. G. Talma, and J. W. M. Noordermeer, J. Adhes. Sci. Technol., 27, 1048 (2013).

    Article  CAS  Google Scholar 

  15. A. I. Abou-Kandil, A. Awad, N. Darwish, A. B. Shehata, and B. K. Saleh, Int. J. Adhes. Adhes., 44, 26 (2013).

    Article  CAS  Google Scholar 

  16. M. P. Wagner and N. L. Hewitt, J. Elastomers Plast., 10, 95 (1978).

    CAS  Google Scholar 

  17. Y. M. Chen and Y. Zhang, Tire Industry, 34, 188 (2014).

    Google Scholar 

  18. M. Jamshidi, F. Afshar, and B. Shamayeli, J. Appl. Polym. Sci., 101, 2488 (2006).

    Article  CAS  Google Scholar 

  19. X. Y. Shi, M. Q. Ma, C. B. Lian, and D. W. Zhu, Polym. Test., 32, 1145 (2013).

    Article  CAS  Google Scholar 

  20. A. K. Naskar, A. K. Mukherjee, and R. Mukhopadhyay, Polym. Degrad. Stabil., 83, 173 (2004).

    Article  CAS  Google Scholar 

  21. J. M. Park and R. V. Subramanian, J. Adhes. Sci. Technol., 5, 459 (1991).

    Article  CAS  Google Scholar 

  22. J. M. Park and R. V. Subramanian, J. Adhes. Sci. Technol., 8, 1473 (1994).

    Article  CAS  Google Scholar 

  23. T. Deak, T. Czigany, P. Tamas, and C. Nemeth, Express Polym. Lett., 4, 590 (2010).

    Article  CAS  Google Scholar 

  24. Y. L. Liu, S. J. Shen, L. Zhang, and L. M. Shao, Adv. Mater. Res., 236-238, 1467 (2011).

    Article  CAS  Google Scholar 

  25. J. Militky, V. Kovacic, and J. Rubnerova, Eng. Fract. Mech., 69, 1025 (2002).

    Article  Google Scholar 

  26. X. Y. Shi, C. B. Lian, Y. Y. Shang, and H. Y. Zhang, Polym. Test., 48, 175 (2015).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhuo Li or Shugao Zhao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Z., Xiao, T. & Zhao, S. Effects of surface treatments on Mechanical properties of Continuous basalt fibre cords and their Adhesion with rubber matrix. Fibers Polym 17, 910–916 (2016). https://doi.org/10.1007/s12221-016-5928-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5928-7

Keywords

Navigation