Skip to main content
Log in

GC-MS analysis of worn textile for odour formation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Odour formation in the textile is a serious and embarrassing problem for an individual. The axilla born bacterial species are noted as the main reason for odour formation in axilla. In this research an attempt has been made to identify the odour generating compounds on the textile material after wear trial using gas chromatography and mass spectrum (GC-MS). The result indicates that the worn textile material consisted steroidal fractions of 5a-androst-16-ene-3-one and cholesterol, the major odour forming source from axilla. The results also identified the other important odour forming fatty acids and alcohols like lauric acids, diethyl esters of 1,2-benzenedicarboxylic acid, methyl esters of tetradecanoic acid, 3- methylhexanoic acid, Tetradecanol and acetic acid in axilla worn textile. These components were the derivatives of axilla specific odourous components like phthalic acid, myristic acid, isobutric acid and alcohols. The effect of Terminalia chebula extract finish on the odour formation also analysed and the results shows a considerable reduction in odour causing short chain volatile fatty acids (VFAs) in the worn textile compare to the untreated textile. The analysis also identified more amounts of active components of Terminalia chebula on the fabric surface instead of the odourous components from axilla.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. A. Natsch, S. Derrer, F. Flachsmann, and J. Schmid, Chem. Biodivers., 3, 1 (2006).

    Article  CAS  Google Scholar 

  2. R. Claus and W. Alsing, J. Endocrinol., 68, 483 (1976).

    Article  CAS  Google Scholar 

  3. B. W. L. Brooksbank, R. Brown, and J. A. Gustafsson, Experientia, 30, 864 (1974).

    Article  CAS  Google Scholar 

  4. J. N. Labows, J. T. Reilly, J. J. Leyden, and G. Preti “Cosmetic Science and Technology Series” (K. Laden Ed.), Vol. 20, pp.59–82, Marcel Dekker, New York, 1999.

    CAS  Google Scholar 

  5. X. N. Zeng, J. J. Leyden, H. J. Lawley, K. Sawano, I. Nohara, and G. Preti, J. Chem. Ecol., 17, 1469 (1991).

    Article  CAS  Google Scholar 

  6. N. Shehadeh and A. Kligman, J. Invest. Dermatol., 41, 1 (1963).

    Article  Google Scholar 

  7. T. Akutsu, K. Sekiguchi, T. Ohmori, and K. Sakurada, Japanese Chem. Senses, 31, 5573 (2006).

    Google Scholar 

  8. J. Havlicek and P. Lenochova, Chem. Senses, 31, 747 (2006).

    Article  Google Scholar 

  9. D. J. Penn, E. Oberzaucher, K. Grammer, G. Fisher, H. A. Soini, D. Wiesler, M. V. Novotny, S. J. Dixon, Y. Xu, and R. G. Brereton, J. R. Soc. Interface, 4, 331 (2007).

    Google Scholar 

  10. S. J. Dixon, Y. Xu, and R. G. Brereton, H. A. Soini, M. V. Novotny, E. Oberzaucher, K. Grammer, and D. J. Penn, Chemometr Intell. Lab. Syst., 87, 161 (2007).

    Article  CAS  Google Scholar 

  11. A. V. Rawlings, Int. J. Cosmet. Sci., 28, 79 (2006).

    Article  CAS  Google Scholar 

  12. S. U. Savelev, S. Antony-Babu, S. C. Roberts, H. Wang, A. S. Clare, L. M. Gosling, M. Petrie, M. Goodfellow, A. G. O’Donnell, and A. C. Ward, J. Chem. Ecol., 34, 1253 (2008).

    Article  CAS  Google Scholar 

  13. W. J. Harper, Adv. Exp. Med. Biol., 488, 59 (2001).

    Article  CAS  Google Scholar 

  14. R. H. McQueen, R. M. Laing, B. E. Niven, C. M. Delahunty, and C. A. Wilson, Text. Res. J., 77, 645 (2007).

    Article  CAS  Google Scholar 

  15. A. Ronald Hites in “Handbook of Instrumental Techniques for Analytical Chemistry” (F. A. Settle Ed.), Vol. 1, p. 609, Prentice Hall PTR, New Jersey, 1997.

    Google Scholar 

  16. R. H. McQueen, R. M. Laing, C. M. Delahunty, H. J. L. Brooks, and B. E. Niven, J. Text. Inst., 99, 515 (2008).

    Article  CAS  Google Scholar 

  17. R. Rathinamoorthy, G. Thilagavathi, S. Brindha, P. Gayathri, N. S. Poornakala, and B. Pradeep, Fiber. Polym., 15, 1669 (2014).

    Article  CAS  Google Scholar 

  18. D. B. Gower, A. I. Mallet, W. J. Watkins, L. M. Wallace, and J. P. Calame, J. Steroid Biochem. Mol. Biol., 63, 81 (1997).

    Article  CAS  Google Scholar 

  19. X. N. Zeng, A. Spielman, B. R. Vowels, J. J. Leyden, K. Biemann, and G. Preti, Proc. Natl. Acad. Sci. USA, 93, 6626 (1996).

    Article  CAS  Google Scholar 

  20. C. Austin and J. Ellis, J. Steroid. Biochem. Mol. Biol., 87, 105 (2003).

    Article  CAS  Google Scholar 

  21. A. G. James, D. Hyliands, Int. J. Cosmet. Sci., 26, 149 (2004).

    Article  CAS  Google Scholar 

  22. A. Natsch, J. Schmid, and F. Flachsmann, Chem. Biodivers, 1, 1058 (2004).

    Article  CAS  Google Scholar 

  23. C. Starkenmann, Y. Niclass, M. Troccaz, and A. J. Clark, Chem. Biodivers, 2, 705 (2005).

    Article  CAS  Google Scholar 

  24. R. Emter and A. Natsch, J. Biol. Chem., 283, 20645 (2008).

    Article  CAS  Google Scholar 

  25. A. Gordon James, C. J. Austin, D. S. Cox, D. Taylor, and R. Calvert, FEMS Microbiol. Ecol., 83, 527 (2013).

    Article  Google Scholar 

  26. A. G. Moat and J. W. Foster, “Carbohydrate Metabolism and Energy Production”, 2nd ed., p.188, In Microbial Physiology, John Wiley & Sons, New York, 1988.

    Google Scholar 

  27. K. T. Holland, “The Skin Microflora and Microbial Skin Disease” (W. C. Noble Ed.), pp.33-72, University Press, Cambridge, UK, 1993.

    Google Scholar 

  28. N. Nicolaides, Science, 186, 19 (1974).

    Article  CAS  Google Scholar 

  29. N. Nicolaides and J. M. B. Apon, Biol. Mass Spectrom., 4, 337 (1977).

    Article  CAS  Google Scholar 

  30. A. G. James, J. Casey, D. Hyliands, and G. Mycock, World J. Microbiol. Biotechnol., 20, 787 (2004).

    Article  CAS  Google Scholar 

  31. F. J. Rennie, D. B. Gower, and K. T. Holland, Br. J. Dermatol., 124, 596 (1991).

    Article  CAS  Google Scholar 

  32. J. J. Leyden, K. J. McGinley, E. Holzle, J. N. Labows, and A. M. Kligman, J. Invest. Dermatol., 77, 413 (1981).

    Article  CAS  Google Scholar 

  33. N. M. Hooper, FEBS Lett., 354, 1 (1994).

    Article  CAS  Google Scholar 

  34. A. Natsch, H. Gfeller, P. Gygax, J. Schmid, and G. Acuna, J. Biol. Chem., 278, 5718 (2003).

    Article  CAS  Google Scholar 

  35. P. J. Jackman and W. C. Noble, Clin. Exp. Dermatol., 8, 259 (1983).

    Article  CAS  Google Scholar 

  36. A. G. James D. Hyliands, and H. Johnston, Int. J. Cosmet. Sci., 26, 149 (2004).

    Article  CAS  Google Scholar 

  37. E. Fredrich, H. Barzantny, I. Brune, and A. Tauch, Trends in Microbiol., 21, 305 (2013).

    Article  CAS  Google Scholar 

  38. R. Rathinamoorthy and G. Thilagavathi, JTATM, 9, 1 (2014).

    Google Scholar 

  39. R. Rathinamoorthy, S. Udayakumar, and G. Thilagavathi, Int. J. Pharm. Life Sci., 2, 1147 (2011).

    Google Scholar 

  40. R. Rathinamoorthy and G. Thilagavathi, Int. J. Pharma. Sci. Nanotech., 4, 1549 (2012).

    CAS  Google Scholar 

  41. S. Nandagopal, A. Ganesh kumar, D. P. Dhanalakshmi, and P. Prakash, Int. J. Pharm. Pharm. Sci., 6, 368 (2014).

    Google Scholar 

  42. S. Valli and S. Gokulshankar, J. Adv. Pharm. Edu. Res., 3, 76 (2013).

    CAS  Google Scholar 

  43. G. Singh and P. Kumar, Pharmacognosy Res., 5, 162 (2013).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Thilagavathi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rathinamoorthy, R., Thilagavathi, G. GC-MS analysis of worn textile for odour formation. Fibers Polym 17, 917–924 (2016). https://doi.org/10.1007/s12221-016-5891-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5891-3

Keywords

Navigation