Skip to main content
Log in

Characteristics of lignocellulosic fibers from hardwood pulp by laccase-catalyzed TEMPO oxidation

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

There is a challenge to find an effective and eco-friendly method to achieve the modification of fibers. The effect of laccase-TEMPO system on the properties of the bleached eucalyptus kraft pulp was investigated in this work. The results were demonstrated by the decreases in curl values and kink index. In addition, carboxyl and aldehyde groups were introduced in this reaction system. Compared with initial pulp, the contents of aldehyde and carboxyl groups of the treated pulp were increased from 42.6 μmol/g, 8.4 μmol/g to 125.4 μmol/g, 26.3 μmol/g respectively. However, the treatment had a detrimental effect on the thermal stability of pulp fibers. Moreover, the crystallinity index was slightly increased (from 82.1 % to 83.8 %) after the TEMPO-mediated oxidation, but the native crystalline structure was nearly unchanged. Furthermore, after the oxidation treatment, the relatively smooth film surface became textured, the carbon and oxygen bonds were changed, which were investigated by scanning electron microscope and X-ray photoelectron spectroscopy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Kulys and R. Vidziunaite, J. Mol. Catal., 37, 79 (2005).

    Article  CAS  Google Scholar 

  2. W. L. Qiu, Z. F. Wang, and L. J. Huang, Chemistry, 70, 29 (2007).

    CAS  Google Scholar 

  3. I. W. C. E. Arends, Y. X. Li, R. Ausan, and R. A. Sheldon, Tetrahedron, 62, 6659 (2006).

    Article  CAS  Google Scholar 

  4. J. Bo, E. Drouet, M. Milas, and M. Rinaudo, Carbohydr. Res., 327, 455 (2000).

    Article  Google Scholar 

  5. T. Saito, S. Kimura, Y. Nishiyama, and A. Isogai, Biomacromolecules, 8, 2485 (2007).

    Article  CAS  Google Scholar 

  6. G. Y. Yang, Y. C. Guo, G. H. Wu, L. W. Zheng, and M. P. Song, Prog. Chem., 19, 1727 (2007).

    Google Scholar 

  7. A. Wells, M. Teria, and T. Eve, Biochem. Soc. Trans., 34, 304 (2006).

    Article  CAS  Google Scholar 

  8. M. Fabbrini, C. Galli, P. Gentili, and D. Macchitella, Tetrahedron. Lett., 42, 7551 (2001).

    Article  CAS  Google Scholar 

  9. I. W. C. E. Arends, Y. X. Li, and R. A. Sheldon, Biocatal. Biotransform., 24, 443 (2006).

    Article  CAS  Google Scholar 

  10. E. Aracri, C. Valls, and T. Vidal, Carbohydr. Polym., 88, 830 (2012).

    Article  CAS  Google Scholar 

  11. E. Aracri and T. Vidal, Cellulose, 19, 867 (2012).

    Article  CAS  Google Scholar 

  12. E. Aracri, T. Vidal, and A. J. Ragauskas, Carbohydr. Polym., 84, 1384 (2011).

    Article  CAS  Google Scholar 

  13. K. Fu, S. Fu, H. Zhan, P. Zhou, M. Liu, and H. Liu, Bioresources, 8, 1385 (2013).

    Google Scholar 

  14. X. S. Chai, Q. X. Hou, J. Y. Zhu, S. L. Chen, S. F. Wang, and L. Lucia, Ind. Eng. Chem. Res., 42, 5440 (2003).

    Article  CAS  Google Scholar 

  15. X. S. Chai, D. C. Zhang, Q. X. Hou, and S. H. Yoon, J. Ind. Eng. Chem., 13, 597 (2007).

    CAS  Google Scholar 

  16. D. Page, M. Barbe, R. Seth, and B. Jordan, J. Pulp Pap. Sci., 10, J74 (1984).

    Google Scholar 

  17. I. Patel, R. Ludwig, D. Haltrich, T. Rosenau, and A. Potthast, Holzforschung, 65, 475 (2011).

    Article  CAS  Google Scholar 

  18. O. Yusuke, S. Tsuguyuki, and I. Akira, Holzforschung, 63, 529 (2009).

    Google Scholar 

  19. Q. J. Meng, H. L. Li, S. Y. Fu, and L. A. Lucia, React. Funct. Polym., 85, 142 (2014).

    Article  CAS  Google Scholar 

  20. H. Fukuzumi, T. Saito, Y. Okita, and A. Isogai, Anal. Appl. Pyrol., 95, 1502 (2010).

    CAS  Google Scholar 

  21. G. Y. Zhu, X. Zhu, Z. B. Xiao, and F. P. Yi, Carbohydr. Polym., 94, 126 (2012).

    Article  CAS  Google Scholar 

  22. T. Saito and A. Isogai, Carbohydr. Polym., 61, 183 (2005).

    Article  CAS  Google Scholar 

  23. T. Saito and A. Isogai, Biomacromolecules, 5, 1983 (2004).

    Article  CAS  Google Scholar 

  24. A. Alemdar and M. Sain, Compos. Sci. Technol., 68, 557 (2008).

    Article  CAS  Google Scholar 

  25. W. S. Chen, H. P. Yu, Y. X. Liu, P. Chen, M. X. Zhang, and Y. F. Hai, Carbohydr. Polym., 83, 1804 (2011).

    Article  CAS  Google Scholar 

  26. T. Saito, I. Shibata, A. Isogai, N. Suguri, and N. Sumikawa, Carbohydr. Polym., 61, 414 (2005).

    Article  CAS  Google Scholar 

  27. C. Lai, L. Sheng, S. Liao, T. Xi, and Z. Zhang, Surf. Interface Anal., 45, 1673 (2013).

    Article  CAS  Google Scholar 

  28. C. S. Freire, A. J. Silvestre, N. C. Pascoal, A. Gandini, P. Fardim, and B. Holmbom, J. Colloid Interface Sci., 301, 205 (2006).

    Article  CAS  Google Scholar 

  29. M. Hirota, N. Tamura, T. Saito, and A. Isogai, Cellulose, 16, 841 (2009).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hailong Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., Liu, M., Liu, Y. et al. Characteristics of lignocellulosic fibers from hardwood pulp by laccase-catalyzed TEMPO oxidation. Fibers Polym 17, 1330–1335 (2016). https://doi.org/10.1007/s12221-016-5744-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5744-0

Keywords

Navigation