Skip to main content
Log in

Thermal degradation of polylactide and its electrospun fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Thermal degradations of poly(lactic acid), (PLA) and its fiber were studied via direct pyrolysis mass spectrometry. As the amount of PLA pyrolyzed was increased the relative yields of protonated and cyclic oligomers were increased indicating that inter-molecular interactions were promoted. Hydrolysis reactions caused significant decrease in the relative yields of high mass products. Intermolecular trans-esterifications were more effective during the pyrolysis of PLA fiber. On the other hand, PLA fiber showed lower sensitivity to water vapor. This behavior was associated with the increase in intermolecular trans-esterification reactions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Garlotta, J. Polym. Environ., 9, 63 (2002).

    Article  Google Scholar 

  2. L. T. Lim, R. Auras, and M. Rubino, Prog. Polym. Sci., 33, 820 (2008).

    Article  CAS  Google Scholar 

  3. H. Balakrishnan, A. Hassan, and M. Imran, Polymer Plast. Tech. Eng., 51, 175 (2012).

    Article  CAS  Google Scholar 

  4. K. M. Nampoothiri, N. R. Nair, and J. R. Pappy, Bioresour. Technol., 101, 8493 (2010).

    Article  Google Scholar 

  5. F. Carrasco, P. Pagès, J. Gámez-Pérez, O. O. Santana, and M. L. Maspoch, Polym. Degrad. Stabil., 95, 116 (2010).

    Article  CAS  Google Scholar 

  6. X. Yuan, A. F. T. Mak, K. W. Kwok, B. K. O. Yung, and K. Yao, J. Appl. Polym. Sci., 81, 251 (2001).

    Article  CAS  Google Scholar 

  7. K. E. Perepelkin, Fiber Chem., 34, 85 (2002).

    Article  CAS  Google Scholar 

  8. B. Gupta, N. Revagade, N. Anjum, R. Jain, B. Atthoff, and J. Hilborn, J. Appl. Polym. Sci., 100, 1239 (2006).

    Article  CAS  Google Scholar 

  9. B. Gupta, N. Revagade, N. Anjum, R. Jain, B. Atthoff, and J. Hilborn, J. Appl. Polym. Sci., 101, 3774 (2006).

    Article  CAS  Google Scholar 

  10. B. Gupta, N. Revagade, and J. Hilborn, Prog. Polym. Sci., 32, 455 (2007).

    Article  CAS  Google Scholar 

  11. M. Puchalski, K. Sulak, M. Chrzanowski, S. Sztajnowski, and I. Krucinska, Text. Res. J., 85, 535 (2015).

    Article  CAS  Google Scholar 

  12. Y. Li, C. T. Lim, and M. Kotaki, Polymer, 56, 572 (2015).

    Article  CAS  Google Scholar 

  13. R. Casasola, N. L. Thomas, A. Trybala, and S. Georgiadou, Polymer, 55, 4728 (2014).

    Article  CAS  Google Scholar 

  14. M. Ma and W. Zhou, Ind. Eng. Chem. Res., 54, 2599 (2015).

    Article  CAS  Google Scholar 

  15. C. C. Liao, C. C. Wang, and C. Y. Chen, Polymer, 52, 4303 (2011).

    Article  CAS  Google Scholar 

  16. K. Bruckmoser and K. Resch, J. Appl. Polym. Sci., 132, 4243 (2015).

    Article  Google Scholar 

  17. S. Solarski, M. Ferreira, and E. Devaux, Polymer, 46, 1118 (2005).

    Article  Google Scholar 

  18. V. Sencadas, C. M. Costa, G. Botelho, C. Caparrósb, C. Ribeiroa, J. L. Gómez-Ribellesdef, and S. Lanceros-Mendeza, J. Macromol. Sci. Part B-Phys., 51, 411 (2012).

    Article  CAS  Google Scholar 

  19. M. K. Mitchell and D. E. Hirt, Polym. Eng. Sci., 55, 1652 (2015).

    Article  CAS  Google Scholar 

  20. R. L. Hammonds, W. H. Gazzola, and R. S. Benson, J. Appl. Polym. Sci., 131, 4059 (2014).

    Article  Google Scholar 

  21. I. C. McNeill and H. A. Leiper, Polym. Degrad. Stabil., 11, 267 (1985).

    Article  CAS  Google Scholar 

  22. I. C. McNeill and H. A. Leiper, Polym. Degrad. Stabil., 11, 309 (1985).

    Article  CAS  Google Scholar 

  23. S. R. Andersson, M. Hakkarainen, and A. Albertsson, Polym. Degrad. Stabil., 97, 914 (2012).

    Article  CAS  Google Scholar 

  24. F. D. Kopinke, M. Remmler, K. Mackenzie, M. Möder, and O. Wachsen, Polym. Degrad. Stabil., 53, 329 (1996).

    Article  CAS  Google Scholar 

  25. Y. Fan, H. Nishida, Y. Shirai, Y. Tokiwa, and T. Endo, Polym. Degrad. Stabil., 86, 197 (2004).

    Article  CAS  Google Scholar 

  26. F. Khabbaz, S. Karlsson, and A. Albertsson, J. Appl. Polym. Sci., 78, 2369 (2000).

    Article  CAS  Google Scholar 

  27. D. Cam and M. Marucci, Polymer, 38, 1879 (1997).

    Article  CAS  Google Scholar 

  28. A. Babanalbandi, D. J. T. Hill, D. S. Hunter, and L. Kettle, Polym. Int., 48, 980 (1999).

    Article  CAS  Google Scholar 

  29. Y. Aoyagi, K. Yamashita, and Y. Doi, Polym. Degrad. Stabil., 76, 53 (2002).

    Article  CAS  Google Scholar 

  30. H. Zou, C. Yi, L. Wang, H. Liu, and W. Xu, J. Therm. Anal. Calorim., 97, 929 (2009).

    Article  CAS  Google Scholar 

  31. C. S. Proikakis, P. Tarantili, and G. Andreopoulos, J. Elastomer Plast., 34, 49 (2002).

    Article  CAS  Google Scholar 

  32. M. P. Arrieta, F. Parres, J. Lopez, and A. Jimenez, J. Anal. Appl. Pyrolysis, 101, 150 (2013).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jale Hacaloglu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ozdemir, E., Hacaloglu, J. Thermal degradation of polylactide and its electrospun fiber. Fibers Polym 17, 66–73 (2016). https://doi.org/10.1007/s12221-016-5679-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5679-5

Keywords

Navigation