Skip to main content
Log in

Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this work, the novel chitosan derivative ethylamine hydroxyethyl chitosan (EHC) was synthesized and blended with cellulose in an aqueous N-methylmorpholine-N-oxide (NMMO) solution in order to fabricate antibacterial chitosan/cellulose fiber. The rheological behaviors of the obtained co-solution in both steady and dynamic states were carefully investigated to determine the spinnability of the co-solution. In steady state, the addition of EHC was found to preserve the power-law flow characteristics of cellulose in the aqueous NMMO solution, while broadening the first Newtonian fluid-flow area. Under dynamic conditions, both Han-plot and viscoelastic analyses indicated the homogeneity of the co-solution. EHC/cellulose antibacterial fibers were successfully spun via the lyocell process using aqueous NMMO as the solvent, confirming the excellent spinnability of the EHC/cellulose co-solution. Scanning electron microscopy was used to observe the morphology of the obtained EHC/cellulose fibers; they were also investigated for antibacterial activity. The obtained EHC/cellulose fiber exhibited good spinning consistency and strong antibacterial activity against Escherichia coli, demonstrating potential applications for the material in antibacterial textiles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. X. K. Lu, S. J. Tang, B. L. Huang, X. Y. Shen, and F. Hong, Fiber. Polym., 14, 935 (2013).

    Article  CAS  Google Scholar 

  2. H. C. Kim and Y. S. Chung, Fiber. Polym., 14, 292 (2013).

    Article  CAS  Google Scholar 

  3. X. Xu, X. Zhuang, and B. Cheng, Carbohydr. Polym., 81, 541 (2010).

    Article  CAS  Google Scholar 

  4. Y. Yao, E. Zhang, and X. Xia, Cellulose, 22, 625 (2014).

    Article  Google Scholar 

  5. X. F. Liu, X. N. Zhi, Y. F. Liu, B. Wu, Z. Sun, and J. Shen, J. Agric. Food. Chem., 60, 3471 (2012).

    Article  CAS  Google Scholar 

  6. M. Bozic, J. Strancar, and V. Kokol, React. Funct. Polym., 73, 1377 (2013).

    Article  CAS  Google Scholar 

  7. R. J. Lee, R. Temmer, T. Tamm, A. Aabloo, and R. Kiefer, React. Funct. Polym., 73, 1072 (2013).

    Article  CAS  Google Scholar 

  8. N. Horzum, M. M. Demir, and M. Nairat, RSC Adv., 3, 7828 (2013).

    Article  CAS  Google Scholar 

  9. A. Niekraszewicz and D. Ciechanska, Fibres Text. East. Eur., 14, 58 (2006).

    Google Scholar 

  10. L. F. Zemljic, O. Sauperl, and T. Kreze, Text. Res. J., 83, 185 (2013).

    Article  Google Scholar 

  11. Z. Li, X. F. Liu, X. P. Zhuang, Y. L. Guan, and K. D. Yao, J. Appl. Polym. Sci., 84, 2049 (2002).

    Article  CAS  Google Scholar 

  12. L. Zhao, H. Mitomo, and F. Yosh, J. Bioact. Compat. Polym., 23, 319 (2008).

    Article  CAS  Google Scholar 

  13. K. Luo, J. Yin, and O. V. Khutoryanskaya, Macromol. Biosci., 8, 184 (2008).

    Article  CAS  Google Scholar 

  14. L. Fras, T. Ristic, and T. Tkavc, J. Eng. Fiber. Fabr., 7, 50 (2012).

    CAS  Google Scholar 

  15. T. Heinze and A. Koschella, Polímeros., 15, 84 (2005).

    Article  CAS  Google Scholar 

  16. B. Medronho, A. Romano, and M. G. Miguel, Cellulose, 19, 581 (2012).

    Article  CAS  Google Scholar 

  17. T. Rosenau, A. Potthast, and H. Sixta, Prog. Polym. Sci., 26, 1763 (2001).

    Article  CAS  Google Scholar 

  18. B. Niekraszewicz and P. Czarnecki, J. Appl. Polym. Sci., 86, 907 (2002).

    Article  CAS  Google Scholar 

  19. Q. Y. Gao, X. Y. Shen, and X. K. Lu, Carbohydr. Polym., 3, 1253 (2011).

    Article  Google Scholar 

  20. S. H. Yu, H. Y. Hsieh, J. C. Pang, D. W. Tang, C. M. Shih, M. L. Tsai, Y. C. Tsai, and F. L. Mi, Food. Hydrocolloid., 32, 9 (2013).

    Article  CAS  Google Scholar 

  21. W. J. Xiao, T. H. Wu, J. J. Peng, Y. Bai, J. Y. Li, G. Q. Lai, Y. Wu, and L. Z. Dai, J. Appl. Polym. Sci., 128, 1193 (2013).

    Article  CAS  Google Scholar 

  22. A. G. Boricha and Z. V. P. Murthy, J. Polym. Eng., 31, 333 (2011).

    Article  CAS  Google Scholar 

  23. D. L. Morgado, E. Frollini, A. Castellan, D. S. Rosa, and V. Coma, Cellulose., 18, 699 (2011).

    Article  CAS  Google Scholar 

  24. G. K. Khaira, R. Kumariya, M. Chibber, and M. Ghosh, J. Water. Health., 11, 410 (2013).

    Article  CAS  Google Scholar 

  25. J. F. Blachot, L. Chazeau, and J. Y. Cavaille, Polymer, 43, 881 (2002).

    Article  CAS  Google Scholar 

  26. M. M. Cross, J. Appl. Polym. Sci., 13, 765 (1969).

    Article  CAS  Google Scholar 

  27. E. Maderek and B. A. Wolf, Angew. Makromol. Chem., 161, 157 (2003).

    Article  Google Scholar 

  28. C. D. Han and J. K. Kim, Polymer, 34, 2533 (1993).

    Article  CAS  Google Scholar 

  29. C. D. Han and J. K. Kim, Macromolecules, 22, 4292 (1989).

    Article  CAS  Google Scholar 

  30. N. R. Sudarshan, D. G. Hoover, and D. Knorr, Food Biotechnol., 6, 257 (1992).

    Article  CAS  Google Scholar 

  31. X. F. Liu, Y. L. Guan, and D. Z. Yang, J. Appl. Polym. Sci., 79, 1324 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaofei Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, Y., Liu, X., Zhuang, X. et al. Rheological behavior and spinnability of ethylamine hydroxyethyl chitosan/cellulose co-solution in N-methylmorpholine-N-oxide system. Fibers Polym 17, 778–788 (2016). https://doi.org/10.1007/s12221-016-5578-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-016-5578-9

Keywords

Navigation