Skip to main content
Log in

Fabrication of high surface area PAN-based activated carbon fibers using response surface methodology

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This study reports on the modeling and optimization of the iodine number of activated carbon fiber (ACF), using response surface methodology (RSM) based on the full factorial design (FFD). The individual and the interaction effects of the effective factors such as activation temperature (800, 900 and 1000 °C), time (1, 2 and 3 h), and activator type (KOH and NaOH) on the iodine number of the ACF were investigated in the optimization section. The FFD analysis confirmed that activation temperature and time were the main significant variables affecting the iodine number. High regression coefficient between the variables and the iodine number (R 2=0.9170) indicates excellent evaluation of experimental data by quadratic polynomial model. The RSM model predicted the 1028 value of the highest iodine number at conditions of 920 °C activation temperature, and 2.20 h of the time with used KOH for activator in activation process. The obtained FFD results confirmed that the selected RSM model presented acceptable performance for evaluating the involved factors and prediction of the ACF iodine number. The ACF produced under optimized conditions was characterized by pore structure analysis, scanning electron microscopy (SEM), and N2 adsorption/desorption isotherm. The obtained results showed that the produced ACF has developed porous structure and fibrous shape.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Y. Yang, Z. M. Hua, X. Gang, and J. Z. Xiong, J. Porous. Mat., 18, 379 (2011).

    Article  CAS  Google Scholar 

  2. E. Ekrami, F. Dadashian, and M. Soleimani, Fiber. Polym., 15, 1855 (2014).

    Article  CAS  Google Scholar 

  3. A. L. Solano, M. A. L. Rodenas, J. P. M. Lozar, M. Kunowsky, and A. J. R. Anaya, Int. J. Energy, Environ. Econ., 20, 59 (2012).

    Google Scholar 

  4. V. T. Fernandez, J. M. M. Sanz, D. Montane, and V. Fierro, J. Chem. Eng. Data, 54, 2216 (2009).

    Article  Google Scholar 

  5. R. Hilton, P. Bick, A. Tekeei, E. Leimkuehler, P. Pfeifer, and G. J. Suppes, Ind. Eng. Chem. Res., 51, 9129 (2012).

    Article  CAS  Google Scholar 

  6. J. A. M. Agullo, B. C. Moore, D. C. Amoros, and A. L. Solano, Carbon, 42, 1367 (2004).

    Article  Google Scholar 

  7. H. Y. Hsiao, C. M. Huang, M. Y. Hsu, and H. Chen, Sep. Purif. Technol., 82, 19 (2011).

    Article  CAS  Google Scholar 

  8. W. Shen, S. Zhang, Y. He, J. Li, and W. Fan, J. Mater. Chem., 21, 14036 (2011).

    Article  CAS  Google Scholar 

  9. M. Li, Y. Chen, Z. H. Huang, and F. Kang, J. Nanomater., 2014, 204172 (2014).

    Google Scholar 

  10. B. Xu, F. Wu, R. Chen, G. Cao, S. Chen, and Y. Yang, J. Power Sources, 195, 2118 (2010).

    Article  CAS  Google Scholar 

  11. M. Wu, Q. Zha, J. Qiu, Y. Guo, H. Shang, and A. Yuan, Carbon, 42, 205 (2004).

    Article  CAS  Google Scholar 

  12. A. T. Kalashnik, T. N. Smirnova, O. P. Chernova, and V. V. Kozlov, Polym. Sci., Ser. A, 52, 1233 (2010).

    Article  Google Scholar 

  13. J. A. M. Agullo, B. C. Moore, D. C. Amoros, and A. L. Solano, Microporous Mesoporous Mat., 101, 397 (2007).

    Article  Google Scholar 

  14. N. Yusof, A. F. Ismail, D. Rana, and T. Matsuura, Mater. Lett., 82, 16 (2012).

    Article  CAS  Google Scholar 

  15. O. Ioannidou and A. Zabaniotou, Renew. Sust. Energ. Rev., 11, 1966 (2007).

    Article  CAS  Google Scholar 

  16. A. Rabbi, K. Nasouri, H. Bahrambeygi, A. M. Shoushtari, and M. R. Babaei, Fiber. Polym., 13, 1007 (2012).

    Article  CAS  Google Scholar 

  17. H. Bahrambeygi, N. Sabetzadeh, A. Rabbi, K. Nasouri, A. M. Shoushtari, and M. R. Babaei, J. Polym. Res., 20, 72 (2013).

    Article  Google Scholar 

  18. K. Nasouri, H. Bahrambeygi, A. Rabbi, A. M. Shoushtari, and A. Kaflou, J. Appl. Polym. Sci., 126, 127 (2012).

    Article  CAS  Google Scholar 

  19. K. Nasouri, A. M. Shoushtari, and M. Khamforoush, Fiber. Polym., 14, 1849 (2013).

    Article  CAS  Google Scholar 

  20. D. C. Montgomery, “Design and Analysis of Experiments”, 8th ed., pp.19–47, Wiley, New York, 2008.

    Google Scholar 

  21. R. H. Myers, D. C. Montgomery, and C. M. A. Cook, “Response Surface Methodology: Process and Product Optimization Using Designed Experiments”, 3rd ed., pp.71–819, Wiley, New York, 1995.

    Google Scholar 

  22. N. M. Haimour and S. Emeish, Waste Manage., 26, 651 (2006).

    Article  CAS  Google Scholar 

  23. T. C. Chandra, M. M. Mirna, J. Sunarso, Y. Sudaryanto, and S. Ismadji, J. Taiwan Inst. Chem. Eng., 40, 457 (2009).

    Article  CAS  Google Scholar 

  24. S. Aber, A. Khataee, and M. Sheydaei, Bioresource Technol., 100, 6586 (2009).

    Article  CAS  Google Scholar 

  25. J. W. Kim, M. H. Sohn, D. S. Kim, S. M. Sohn, and Y. S. Kwon, J. Hazard. Mater., 85, 301 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bozorgmehr Maddah.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maddah, B., Nasouri, K. Fabrication of high surface area PAN-based activated carbon fibers using response surface methodology. Fibers Polym 16, 2141–2147 (2015). https://doi.org/10.1007/s12221-015-5514-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5514-4

Keywords

Navigation