Skip to main content

Optimized preparation of activated carbon nanoparticles from acrylic fibrous wastes


In present study, activated carbon is prepared by controlled pyrolysis of acrylic fibrous waste under the layer of charcoal using physical activation in high temperature furnace. The main objective is to study the effect of four factors (i.e. final pyrolysis temperature, holding time at final temperature, heating rate per hour, and number of steps) on carbonization behavior of acrylic fibrous waste. The Box-Behnken design and response surface modeling was performed to get higher specific surface area and higher electrical conductivity. The development of porous morphology having higher surface area is found to increase with increase in pyrolysis temperature, increase in number of steps, decrease in holding time and decrease in heating rate till some optimum value. This behavior is attributed to gradual reaction of atmospheric oxygen with carbonized acrylic fibrous waste, which resulted into the opening of previously inaccessible pores through the removal of tars and disorganised carbon. Moreover, these four factors also found to have significant effect on the development of electrical conductivity of activated carbon. Later on, the carbonized acrylic fibrous waste was pulverized in dry conditions by high energy planetary ball milling to get activated carbon nanoparticles. In addition to refinement of size, the specific surface area and electrical conductivity of pulverized carbon particles was found to increase with increase in milling time. The activated carbon particles obtained after three hours of dry milling revealed the particle size of 521 nm, the electrical conductivity of 21.78 s/m for 0.5 wt % concentration of aqueous dispersion and the specific surface area of 432 m2/g.

This is a preview of subscription content, access via your institution.


  1. 1.

    N. M. Nor, L. C. Lau, K. T. Lee, and A. R. Mohamed, J. Environ. Chem. Eng., 1, 658 (2013).

    Article  Google Scholar 

  2. 2.

    D. Angin, E. Altintig, and T. E. Kose, Bioresource Technol., 148, 542 (2013).

    CAS  Article  Google Scholar 

  3. 3.

    J. Y. Yoo, C. J. Park, K. Y. Kim, Y. S. Son, C. M. Kang, J. M. Wolfson, I. H. Jung, S. J. Lee, and P. Koutrakis, J. Hazard Mater, 289, 184 (2015).

    CAS  Article  Google Scholar 

  4. 4.

    E. Gallego, F. J. Roca, J. F. Perales, and X. Guardino, Build Environ., 67, 14 (2013).

    Article  Google Scholar 

  5. 5.

    P. H. Wang, Z. R. Yue, and J. Liu, J. Appl. Polym. Sci., 60, 923 (1996).

    CAS  Google Scholar 

  6. 6.

    M. C. W. Kwong, C. Y. H. Chao, K. S. Hui, and M. P. Wan, Atmos Environ., 42, 2300 (2008).

    CAS  Article  Google Scholar 

  7. 7.

    Okubo, T. Kuroki, and N. Saeki, Thin Solid Films, 519, 6994 (2011).

    CAS  Article  Google Scholar 

  8. 8.

    E. Ekrami, F. Dadashian, and M. Soleimani, Fiber. Polym., 15, 1855 (2014).

    CAS  Article  Google Scholar 

  9. 9.

    C. I. Su and C. L. Wang, Fiber. Polym., 8, 482 (2007).

    CAS  Article  Google Scholar 

  10. 10.

    M. A. Sidheswaran, H. Destaillats, D. P. Sullivan, S. Cohn, and W. Fisk, Build Environ., 47, 357 (2012).

    Article  Google Scholar 

  11. 11.

    A. Z. Muhammad Abbas, A. Yoshimasa, and M. Machidaa, J. Hazard Mater., 180, 552 (2010).

    Article  Google Scholar 

  12. 12.

    G. S. Bhat, F. L. Cook, A. S. Abhiraman, and L. H. Peebles, Carbon, 28, 377 (1990).

    CAS  Article  Google Scholar 

  13. 13.

    S. K. Theydan and M. J. Ahmed, Powder Technol., 224, 101 (2012).

    CAS  Article  Google Scholar 

  14. 14.

    M. A. Nahil and P. T. Williams, J. Anal. Appl. Pyrol., 91, 67 (2011).

    CAS  Article  Google Scholar 

  15. 15.

    P. Soraia and T. P. Silvestre, Waste Manage, 31, 378 (2011).

    Article  Google Scholar 

  16. 16.

    V. Baheti and J. Militky, Fiber. Polym., 14, 133 (2013).

    CAS  Article  Google Scholar 

  17. 17.

    V. Baheti, J. Militky, and M. Marsalkova, Polym. Compos., 34, 2133 (2014).

    Article  Google Scholar 

Download references

Author information



Corresponding author

Correspondence to Vijay Baheti.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Baheti, V., Naeem, S., Militky, J. et al. Optimized preparation of activated carbon nanoparticles from acrylic fibrous wastes. Fibers Polym 16, 2193–2201 (2015).

Download citation


  • Acrylic fiber waste
  • Pyrolysis
  • Activated carbon
  • Response surface model
  • Optimization
  • Ball milling
  • Carbon nanoparticles