Skip to main content
Log in

An effective and simple process for obtaining high strength silkworm (Bombyx mori) silk fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

This article describes a new process for strengthening natural silk fibers. This process is simple yet effective for mass production of high strength silk fibers, enabled by drawing at a lower temperature and immediately heat setting at a higher temperature. The processing conditions were investigated and optimized to improve the strength. Silk fibers drawn to the maximum ratio at room temperature and then heat set at 200 °C show best tensile properties. Some salient features of the resulting fibers are tensile strength at break reaching 533±10.2 MPa and Young’s modulus attaining 12.9±0.57 GPa. These values are significantly higher than those of natural silk fibers (tensile strength increased by 44 % and Young’s modulus by 135 %). Wide-angle X-ray diffraction and FTIR confirm the transformation of silk I to silk II crystalline structure for the fiber obtained from this process. DSC and TGA data also provide support for the structural change of the silk fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Yao, H. Masuda, C. Zhao, and T. Asakura, Macromolecules, 35, 6 (2002).

    Article  CAS  Google Scholar 

  2. H. C. DeáLong, J. Mater. Chem., 15, 4206 (2005).

    Article  Google Scholar 

  3. M. M. R. Khan, H. Morikawa, Y. Gotoh, M. Miura, Z. Ming, Y. Sato, and M. Iwasa, Int. J. Biol. Macromol., 42, 264 (2008).

    Article  CAS  Google Scholar 

  4. Y. Shen, M. A. Johnson, and D. C. Martin, Macromolecules, 31, 8857 (1998).

    Article  CAS  Google Scholar 

  5. Z. Zhu, T. Imada, and T. Asakura, Mater. Chem. Phys., 117, 430 (2009).

    Article  CAS  Google Scholar 

  6. Z. Zhu, K. Ohgo, and T. Asakura, Express Polym. Lett., 2, 885 (2008).

    Article  CAS  Google Scholar 

  7. Z. Shao and F. Vollrath, Nature, 418, 741 (2002).

    Article  CAS  Google Scholar 

  8. K. A. Trabbic and P. Yager, Macromolecules, 31, 462 (1998).

    Article  CAS  Google Scholar 

  9. S.-W. Ha, A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 6, 1722 (2005).

    Article  CAS  Google Scholar 

  10. E. Marsano, P. Corsini, C. Arosio, A. Boschi, M. Mormino, and G. Freddi, Int. J. Biol. Macromol., 37, 179 (2005).

    Article  CAS  Google Scholar 

  11. H.-J. Jin, S. V. Fridrikh, G. C. Rutledge, and D. L. Kaplan, Biomacromolecules, 3, 1233 (2002).

    Article  CAS  Google Scholar 

  12. C. Zhao, J. Yao, H. Masuda, R. Kishore, and T. Asakura, Biopolymers, 69, 253 (2003).

    Article  CAS  Google Scholar 

  13. T. Kameda, Y. Ohkawa, K. Yoshizawa, J. Naito, A. S. Ulrich, and T. Asakura, Macromolecules, 32, 7166 (1999).

    Article  CAS  Google Scholar 

  14. V. J. Gupta, J. Appl. Polym. Sci., 83, 586 (2002).

    Article  CAS  Google Scholar 

  15. M. Tsukada, G. Freddi, M. Nagura, H. Ishikawa, and N. J. Kasai, J. Appl. Polym. Sci., 46, 1945 (1992).

    Article  CAS  Google Scholar 

  16. A. Martel, M. Burghammer, R. J. Davies, E. Di Cola, C. Vendrely, and C. J. Riekel, J. Am. Chem. Soc., 130, 17070 (2008).

    Article  CAS  Google Scholar 

  17. T. Asakura, T. Yamane, Y. Nakazawa, T. Kameda, and K. Ando, Biopolymers, 58, 521 (2001).

    Article  CAS  Google Scholar 

  18. H. Cao, X. Chen, L. Huang, and Z. Shao, Mater. Sci. Eng., C, 29, 2270 (2009).

    Article  Google Scholar 

  19. C. Jiang, X. Wang, R. Gunawidjaja, Y. H. Lin, M. Gupta, D. Kaplan, R. Naikand, and V. Tsukruk, Adv. Funct. Mater., 17, 2229 (2007).

    Article  CAS  Google Scholar 

  20. S.-W. Ha, Y. H. Parkand, and S. M. Hudson, Biomacromolecules, 4, 488 (2003).

    Article  CAS  Google Scholar 

  21. M. Nagura, M. Urushidani, H. Shinohara, and H. Ishikawa, Kobunshi Ronbunshu, 35, 81 (1978).

    Article  CAS  Google Scholar 

  22. G. Freddi, P. Monti, M. Nagura, Y. Gotohand, and M. Tsukada, J. Polym. Sci. Pt. B-Polym. Phys., 35, 841 (1997).

    Article  CAS  Google Scholar 

  23. J. Magoshi, Kobunshi Ronbunshu, 31, 765 (1974).

    Article  CAS  Google Scholar 

  24. M. Li, W. Tao, S. Kugaand, and Y. Nishiyama, Polym. Adv. Technol., 14, 694 (2003).

    Article  CAS  Google Scholar 

  25. H. Ishikawa, M. Tsukada, I. Toizume, A. Konda, and K. Hirabayashi, Sen-I Gakkaishi, 28, 91 (1972).

    Article  CAS  Google Scholar 

  26. M. Tsukada, M. Obo, H. Kato, G. Freddi, and F. J. Zanetti, J. Appl. Polym. Sci., 60, 1619 (1996).

    Article  CAS  Google Scholar 

  27. I. C. Um, C. S. Ki, H. Kweon, K. G. Lee, D. W. Ihm, and Y. H. Park, Int. J. Biol. Macromol., 34, 107 (2004).

    Article  CAS  Google Scholar 

  28. Y.-Q. Zhao, H.-Y. Cheung, K.-T. Lau, C.-L. Xu, D.-D. Zhao, and H.-L. Li, Polym. Degrad. Stabil., 95, 1978 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Donggang Yao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Wyatt, T., Wu, J. et al. An effective and simple process for obtaining high strength silkworm (Bombyx mori) silk fiber. Fibers Polym 16, 2609–2616 (2015). https://doi.org/10.1007/s12221-015-5170-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-5170-8

Keywords

Navigation