Skip to main content

(Bio)degradation studies of degradable polymer composites with jute in different environments

Abstract

The introduction of new, environmentally friendly and sustainable plastics in the packaging and end-user industry is a solution to the problem of waste management. The degradation of polyesters in different environments could result from an enzymatic attack or simple hydrolysis, or both. The degree of degradation of blends containing polylactide and poly(3-hydroxybutyrate-co-4-hydroxybutyrate), PLA/P(3HB-co-4HB), and its composites with 20 %wt of jute incubated in distilled water at 70 ℃ (abiotic conditions) under industrial composting conditions (system KNEER) was investigated using a Zeiss optical microscope, an atomic force microscope, gel permeation chromatography, differential scanning calorimetry and thermal gravimetric analysis. PLA/P(3HB-co-4HB) was tested under laboratory composting conditions in order to verify whether biodegradation of this material occurs under industrial composting conditions. The addition of jute fibres did significantly reduce the disintegration of the composites during degradation.

This is a preview of subscription content, access via your institution.

References

  1. K. Hamad, M. Kaseem, Y. G. Ko, and F. Deri, Polym. Sci., Ser. A, 56, 812 (2014).

    CAS  Article  Google Scholar 

  2. J. Hopewell, R. Dvorak, and E. Kosior, Philos. Trans. R. Soc. B-Biol. Sci., 364, 2115 (2009).

    CAS  Article  Google Scholar 

  3. M. Kowalczuk, P. Kurcok, M. Kawalec, M. Sobota, M. Michalak, and M. Kwiecien, Chemik 68, 686 (2014).

    Google Scholar 

  4. R. A. Gross and B. Kalra, Science, 297, 803 (2002).

    CAS  Article  Google Scholar 

  5. A. Magon and M. Pyda, Polymer, 50, 3967 (2009).

    CAS  Article  Google Scholar 

  6. M. I. Calafel, P. M. Remiro, M. M. Cortázar, and M. E. Calahorra, Colloid. Polym. Sci., 288, 283 (2010).

    CAS  Article  Google Scholar 

  7. A. Torres, S. Li, S. Roussos, and M. Vert, J. Appl. Polym. Sci., 62, 2295 (1996).

    CAS  Article  Google Scholar 

  8. M. Hakkarainen, S. Karlsson, and A. C. Albertsson, Polymer, 41, 2331 (2000).

    CAS  Article  Google Scholar 

  9. S. J. de Jong, E. R. Arias, D. T. S. Rijkers, C. F. van Nostrum, J. J. Kettenes-Bosch, and W. E. Hennink, Polymer, 42, 2795 (2001).

    Article  Google Scholar 

  10. P. Rychter, R. Biczak, B. Herman, A. Smylla, P. Kurcok, G. Adamus, and M. Kowalczuk, Biomacromolecules, 7, 3125 (2006).

    CAS  Article  Google Scholar 

  11. R. A. Cairncross, J. G. Becker, S. Ramaswamy, and R. O'Connor, Appl. Biochem. Biotechnol., 131, 774 (2006).

    Article  Google Scholar 

  12. W. Sikorska, P. Dacko, M. Sobota, J. Rydz, M. Musiol, and M. Kowalczuk, Macromol. Symp., 272, 132 (2008).

    CAS  Article  Google Scholar 

  13. J. Rydz, G. Adamus, K. Wolna-Stypka, A. Marcinkowski, M. Misiurska-Marczak, and M. M. Kowalczuk, Polym. Degrad. Stabil., 98, 316 (2013).

    CAS  Article  Google Scholar 

  14. J. Rydz, K. Wolna-Stypka, M. Musiol, U. Szeluga, H. Janeczek, and M. Kowalczuk, Polym. Degrad. Stabil., 98, 1450 (2013).

    CAS  Article  Google Scholar 

  15. D. P. Martin and S. F. Williams, Biochem. Eng. J., 16, 97 (2003).

    CAS  Article  Google Scholar 

  16. J. Zhang, X. P. Lu, and T. L. Chu, Adv. Mat. Res., 380, 168 (2012).

    CAS  Article  Google Scholar 

  17. W. H. Lee, M. N. M. Azizan, and K. Sudesh, Malays J. Microbiol., 3, 31 (2007).

    Google Scholar 

  18. T. Volova, E. Shishatskaya, V. Sevastianov, S. Efremov, and O. Mogilnaya, Biochem. Eng. J., 16, 125 (2003).

    CAS  Article  Google Scholar 

  19. D. P. Martin and S. F. Williams, Biochem. Eng. J., 16, 97 (2003).

    CAS  Article  Google Scholar 

  20. C. Hermann-Krauss, M. Koller, A. Muhr, H. Fasl, F. Stelzer, and G. Braunegg, Archaea, 2013, 1 (2013).

    Article  Google Scholar 

  21. Y. Saito and Y. Doi, Int. J. Biol. Macromol., 16, 99 (1994).

    CAS  Article  Google Scholar 

  22. M. L. Focarete, G. Ceccorulli, M. Scandola, and M. Kowalczuk, Macromolecules, 31, 8485 (1998).

    CAS  Article  Google Scholar 

  23. Y. Kikkawa, T. Suzuki, T. Tsuge, M. Kanesato, Y. Doi, and H. Abe, Biomacromolecules, 7, 1921 (2006).

    CAS  Article  Google Scholar 

  24. L. Yua, K. Deana, and L. Li, Prog. Polym. Sci., 31, 576 (2006).

    Article  Google Scholar 

  25. E. Zini, M. L. Focarete, I. Noda, and M. Scandola, Compos. Sci. Technol., 67, 2085 (2007).

    CAS  Article  Google Scholar 

  26. N. M. Barkoula, S. K. Garkhail, and T. Peijs, Ind. Crops Prod., 31, 34 (2010).

    CAS  Article  Google Scholar 

  27. T. Mukherjee and N. Kao, J. Polym. Environ., 19, 714 (2011).

    CAS  Article  Google Scholar 

  28. Y. Yang, M. Murakami, and H. Hamada, J. Polym. Environ., 20, 1124 (2012).

    CAS  Article  Google Scholar 

  29. M. S. Huda, M. Yasui, N. Mohri, T. Fujimura, and Y. Kimura, Mater. Sci. Eng. A-Struct. Mater. Prop., 333, 98 (2002).

    Article  Google Scholar 

  30. H. Ma and C. W. Joo Fiber. Polym., 12, 310 (2011).

    CAS  Article  Google Scholar 

  31. J. Sahari and S. M. Sapuan, Rev. Adv. Mater. Sci., 30, 166 (2011).

    Google Scholar 

  32. H. Lu, S. A. Madbouly, J. A. Schrader, M. R. Kessler, D. Grewelle, and W. R. Graves, RSC Adv., 4, 39802 (2014).

    CAS  Article  Google Scholar 

  33. M. Cunha, M.-A. Berthet, R. Pereira, J. A. Covas, A. A. Vicente, and L. Hilliou, Polym. Compos., 1, 1 (2014).

    Google Scholar 

  34. D. Plackett in “Biodegradable Polymers for Industrial Applications” (R. Smith Ed.), pp.189–214, CRC Press, Cambridge, 2005.

  35. ISO 527-2:2012, Plastics- Determination of Tensile Properties- Part 2: Test Condition for Moulding and Extrusion Plastics, Geneva, 2012.

  36. W. Sikorska, J. Richert, J. Rydz, M. Musiol, G. Adamus, H. Janeczek, and M. Kowalczuk, Polym. Degrad. Stabil., 97, 1891 (2012).

    CAS  Article  Google Scholar 

  37. M. T. Musiol, J. Rydz, W. J. Sikorska, P. R. Rychter, and M. M. Kowalczuk, Pol. J. Chem. Technol., 13, 55 (2011).

    Article  Google Scholar 

  38. S. Lefaux, A. Manceau, L. Benguigui, I. Campistronc, A. Laguerre, M. Laulier, V. Leignel, and G. Tremblin, C.R. Acad. Sci., Ser. IIc: Chim., 7, 97 (2004).

    CAS  Google Scholar 

  39. S. Wong, R. Shanks, and A. Hodzic, Macromol. Mater. Eng., 287, 647 (2002).

    CAS  Article  Google Scholar 

  40. O. Cadar, M. Paul, C. Roman, M. Miclean, and C. Majdik, Polym. Degrad. Stabil., 97, 354 (2012).

    CAS  Article  Google Scholar 

  41. M. Scandola, L. Focarte, G. Adamus, W. Sikorska, M. Kowalczuk, Z. Jedlinski, I. Baranowska, S. Swierczek, and M. Gnatowski, Macromolecules, 30, 2568 (1997).

    CAS  Article  Google Scholar 

  42. S. R. Andersson, M. Hakkarainen, S. Inkinen, A. Södergård, and A. C. Albertsson, Biomacromolecules, 11, 1067 (2010).

    CAS  Article  Google Scholar 

  43. D. Cam, H. Suong-Hyu, and Y. Ikada, Biomaterials, 16, 833 (1995).

    CAS  Article  Google Scholar 

  44. A. C. Karmaker, J. Mater. Sci. Lett., 16, 462 (1997).

    CAS  Article  Google Scholar 

  45. Y. Dong, P. Li, C.-B. Chen, Z.-H. Wang, P. Ma, and G.-Q. Chen, Biomaterials, 31, 8921 (2010).

    CAS  Article  Google Scholar 

  46. M. Hakkarainen, A. C. Albertsson, and S. Karlsson, Polym. Degrad. Stabil., 52, 283 (1996).

    CAS  Article  Google Scholar 

  47. J. A. Khan, M. A. Khan, and R. Islam, Polym. Compos., 34, 671 (2013).

    CAS  Article  Google Scholar 

  48. C. L. Beyler and M. M. Hirschler in “SFPE Handbook of Fire Protection Engineering”, 3rd ed. (P. J. DiNenno Ed.) pp.110–131, NFPA, Quincy, 2001.

  49. M. Zenkiewicz, A. Richert, R. Malinowski, and K. Moraczewski, Polym. Test., 32, 209 (2013).

    CAS  Article  Google Scholar 

  50. M. M. Rahman, S. Afrin, P. Haque, M. M. Islam, M. S. Islam, and M. A. Gafur, Int. J. Chem. Eng., 2014, 1 (2014).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marta Musioł.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Musioł, M., Janeczek, H., Jurczyk, S. et al. (Bio)degradation studies of degradable polymer composites with jute in different environments. Fibers Polym 16, 1362–1369 (2015). https://doi.org/10.1007/s12221-015-1362-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-1362-5

Keywords

  • Polylactide blend
  • Jute
  • (Bio)Degradation
  • Industrial composting