Advertisement

Fibers and Polymers

, Volume 16, Issue 4, pp 883–893 | Cite as

Impedance and dielectric spectroscopy of nano-graphite reinforced silicon elastomer nanocomposites

  • J. Saji
  • A. Khare
  • S. P. MahapatraEmail author
Article

Abstract

Impedance and dielectric spectra of silicone elastomer nanocomposites were used to study their secondary (α* or β) relaxation behavior as a function of nano-graphite loadings in the frequency range of 10−1 to 106 Hz. The effect of nano-graphite loadings on real and imaginary parts of complex impedance has been distinctly visible and explained on the basis of interfacial polarization of filler and relaxation dynamics of polymer chains. The effects of nano-graphite loadings on loss tangent, dielectric permittivity, complex dielectric modulus and electrical conductivity have also been studied. The dielectric permittivity of the composites strongly depends up on the extent of nano-graphite concentration and temperature. The conductivity and relaxation phenomenon have been investigated through dielectric modulus formalism. Nyquist plots, Cole-Cole plots and Argand diagram confirm the existence of non-debye relationship. The frequency dependence of ac conductivity has been investigated by using Percolation theory. The percolation phenomenon has been discussed from electrical conductivity and dielectric permittivity and percolation threshold was found at 6 phr nano-graphite loading. SEM photomicrographs shows well dispersion of nano-graphite.

Keywords

Elastomer Nano-graphite Impedance Dielectric Relaxation Conductivity Percolation 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    M. J. Jiang, Z. M. Dang, and H. P. Xu, Eur. Polym. J., 43, 4924 (2007).CrossRefGoogle Scholar
  2. 2.
    M. Alexandre and P. Dubois, Mater. Sci. Eng., 28, 1 (2000).CrossRefGoogle Scholar
  3. 3.
    S. C. Jana and S. Jain, Polymer, 42, 6897 (2001).CrossRefGoogle Scholar
  4. 4.
    C. Saujanya and S. Radhakrishnan, Polymer, 42, 6723 (2001).CrossRefGoogle Scholar
  5. 5.
    P. Calvert, “Potential Applications of Nanotubes: Carbon Nanotubes, Preparation and Properties” (T. W. Ebbesen Ed.), pp.277–292, CRC Press, Boca Raton FL, 1997.Google Scholar
  6. 6.
    V. Favier, G. R. Canova, S. C. Shrivastava, and J. Y. Cavaille, Polym. Eng. Sci., 37, 1732 (1997).CrossRefGoogle Scholar
  7. 7.
    B. K. G. Theng, “The Chemistry of Clay-organic Reactions”, p.343, John Wiley & Sons, New York, 1974.Google Scholar
  8. 8.
    G. H. Chen, D. J. Wu, W. G. Weng, and W. L. Yan, J. Appl. Polym. Sci., 82, 2506 (2001).CrossRefGoogle Scholar
  9. 9.
    Y. X. Pan, Z. Z. Yu, Y. C. Ou, and G. H. Hu, J. Polym. Sci. Pol. Chem., 38, 1626 (2000).CrossRefGoogle Scholar
  10. 10.
    Y. Kojima, A. Usuki, and M. Kawasami, J. Mater. Res., 6, 1185 (1993).CrossRefGoogle Scholar
  11. 11.
    G. Lagaly, Appl. Clay Sci., 15, 1 (1999).CrossRefGoogle Scholar
  12. 12.
    C. T. Drzal and H. Fukushima, Polym. Prepr., 42, 42 (2001).Google Scholar
  13. 13.
    L. M. Viculis, J. J. Mack, and R. B. Kaner, Science, 299, 1361 (2003).CrossRefGoogle Scholar
  14. 14.
    G. C. Psarras, E. Manolakaki, and G. M. Tsangaris, Compos. Pt. A-Appl. Sci. Manuf., 43, 1187 (2003).CrossRefGoogle Scholar
  15. 15.
    S. W. Shalaby, “Thermoplastic Polymers: Thermal Characterization of Polymeric Materials” (A Turi Ed.), pp.235–364, Academic Press, London, 1981.Google Scholar
  16. 16.
    Y. J. Wang, Y. Pan, X. Zhang, and K. Tan, J. Appl. Polym. Sci., 98, 1344 (2005).CrossRefGoogle Scholar
  17. 17.
    G. Huber and T. A. Vilgis, Macromolecules, 35, 9204 (2002).CrossRefGoogle Scholar
  18. 18.
    M. Kluppel and G. Heinrich, Rubber Chem. Technol., 68, 623 (1995).CrossRefGoogle Scholar
  19. 19.
    J. Saji, A. Khare, R. N. P. Choudhary, and S. P. Mahapatra, J. Elast. Plast., 12, 1 (2013).Google Scholar
  20. 20.
    N. M. Renukappa, Siddaramaiah, R. D. S. Samuel, J. S. Rajan, and J. H. Lee, Mater. Sci.-Mater. Electron., 20, 648 (2009).CrossRefGoogle Scholar
  21. 21.
    L. Nayak, M. Rahaman, D. Khastgir, and T. K. Chaki, Polym. Bull., 67, 1029 (2011).CrossRefGoogle Scholar
  22. 22.
    V. Panwar, B. Kang, J. Park, S. Park, and R. M. Mehra, Eur. Polym. J., 45, 1777 (2009).CrossRefGoogle Scholar
  23. 23.
    J. Saji, A. Khare, R. N. P. Choudhary, and S. P. Mahapatra, J. Polym. Res., 21, 341 (2014).CrossRefGoogle Scholar
  24. 24.
    H. T. Lee, K. R. Chuang, S. A. Chen, P. K. Wei, J. H. Hsu, and W. Fann, Macromolecules, 28, 7645 (1995).CrossRefGoogle Scholar
  25. 25.
    H. Bottger and V. V. Bryskin, “Hopping Conduction in Solids”, pp.169–213, Akademie-Verlag, Berlin, 1985.Google Scholar
  26. 26.
    P. Ghosh and A. Chakrabarti, Eur. Polym. J., 36, 1043 (2000).CrossRefGoogle Scholar
  27. 27.
    A. K. Jonscher, Nature, 267, 673 (1977).CrossRefGoogle Scholar
  28. 28.
    X. Ying, B. Yuezhen, C. K. Chiang, and M. Masaru, Carbon, 45, 1302 (2007).CrossRefGoogle Scholar
  29. 29.
    P. Brandrup and E. H. Immergut, “Polymer Handbook”, 3rd ed., Chap. II, pp.1–145, Wiley Interscience, New York, 1989.Google Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Department of ChemistryNational Institute of TechnologyRaipurIndia
  2. 2.Department of PhysicsNational Institute of TechnologyRaipurIndia

Personalised recommendations