Skip to main content

Flame retardant polymer composites

Abstract

In this review article, different approaches of enhancing flame retardancy of polymeric composite material and their effect on different composite properties are analysed critically. The mechanisms of fire spreading on composite materials are also discussed. Flame retardancy of polymeric composite material can be enhanced either by enhancing the fire performance of constituents of composite i.e. matrices and reinforcing agents or by providing a protective flame retardant (FR) coating around the composite material. Fire performance of reinforcing material is improved by treating with FR-chemicals while the fire performance of polymer matrices can be improved by incorporating micro and nano FR-fillers or by introducing FR-compound into polymer backbone. The flammability of micro and nano filler added polymeric composites and newly developed polymer derivatives and their effect on composite properties like mechanical, thermal have been discussed. However, the development of flame retardant polymer composite is still at nascent stage and for further development, it is necessary to work on the development of non-health hazardous, environment friendly flame retarding agents which will be able to enhance the fire performance of composite materials at very low concentration levels.

This is a preview of subscription content, access via your institution.

References

  1. B. D. Dittenber and V. S. H. GangaRao, Compos. Pt. AAppl. Sci. Manuf., 43, 1419 (2012).

    Article  Google Scholar 

  2. J. Holbery and D. Houston, JOM, 58, 80 (2006).

    CAS  Article  Google Scholar 

  3. G. Oprisan, N. Taranu, and V. Munteanu, Buletinul Institutului Politehnic Diniasi, LVI (LX), 3 (2010).

  4. F. C. Cullis and M. M. Hirschter, “The Combustion of Organic Polymers”, pp.1–10, Clarendon Press, Oxford, London, 1981.

    Google Scholar 

  5. G. Camino, L. Costa, and L. P. M. di-Cortemiglia, Polym. Degrad. Stabil., 33, 131 (1991).

    CAS  Article  Google Scholar 

  6. World Fire Statistics, Information Bulletin of the World Fire Statistics Centre, The Geneva Association, World Fire Statistics No 28/October, 2012.

    Google Scholar 

  7. Bureau of Aircraft Accidents Archives (accessed 10 September 2013), http://www.baaa-acro.com

  8. C. P. Sarkos, The Effect of Cabin Materials on Aircraft Post-crash Fire Survivability, Technical Papers of the Annual Technical Conference, 54, 3068 (1996).

    Google Scholar 

  9. Draft, Military Standard, Fire and Toxicity Performance Requirements for Composite Materials Used in Hull Machinery Applications Inside Naval Submarines, NRL, Washington DC, February, 1987.

    Google Scholar 

  10. Draft, MIL-STD-X108 (SH), Fire and Toxicity Test Methods and Qualification Procedure for Composite Material Systems Used in Hull, Machinery and Structural Application Inside Naval Submarines, NAVSEA, Non-metalic Materials and Packaging Branch, Project 19 GP-N007, July, 1989.

    Google Scholar 

  11. W. D. Schindler and P. J. Hauser, “Chemical Finishing of Textile”, 1st ed., p.98, Woodhead, Cambridge, 2004.

    Book  Google Scholar 

  12. I. S. Wichman, Prog. Energy Combust. Sci., 29, 247 (2003).

    CAS  Article  Google Scholar 

  13. G. Camino and L. Costa, Polym. Degrad. Stabil., 20, 271 (1988).

    CAS  Article  Google Scholar 

  14. P. Wambua, J. Ivens, and I. Verpoest, Compos. Sci. Technol., 63, 1259 (2003).

    CAS  Article  Google Scholar 

  15. N. A. Netravali and S. Chabba, Mater. Today, 4, 22 (2003).

    Article  Google Scholar 

  16. H. Zhang and G. Sun, Mod. Appl. Sci., 3, 129 (2009).

    CAS  Google Scholar 

  17. L. Shumao, R. Jie, Y. Hua, Y. Taoa, and Y. Weizhong, Polym. Int., 59, 242 (2010).

    Google Scholar 

  18. H. Horacek and R. Grabner, Polym. Degrad. Stabil., 54, 205 (1996).

    CAS  Article  Google Scholar 

  19. G. Camino, L. Costa, and G. Martinasso, Polym. Degrad. Stabil., 23, 359 (1989).

    CAS  Article  Google Scholar 

  20. N. Suppakarn and K. Jarukumjorn, Compos. Pt. B-Eng., 40, 613 (2009).

    Article  Google Scholar 

  21. M. Sain, S. H. Park, F. Suhara, and S. Law, Polym. Degrad. Stabil., 83, 363 (2004).

    CAS  Article  Google Scholar 

  22. H. Dvir, M. Gottliebe, S. Daren, and E. Tartakovsky, Compos. Sci. Technol., 63, 1865 (2003).

    CAS  Article  Google Scholar 

  23. C. M. Tai, K. Robert, and Y. Li, J. Appl. Polym. Sci., 80, 2718 (2001).

    CAS  Article  Google Scholar 

  24. S. C. Sheat and J. P. Berry, Polymer, 17, 1095 (1976).

    Article  Google Scholar 

  25. C. S. Zhao, F. L. Huang, W. C. Xiong, and Y. Z. Wang, Polym. Degrad. Stabil., 93, 1188 (2008).

    CAS  Article  Google Scholar 

  26. S. Matko, A. Todly, S. Keszei, P. Anna, G. Bertalan, and G. Marosi, Polym. Degrad. Stabil., 88, 138 (2005).

    CAS  Article  Google Scholar 

  27. X. Chen and J. Chuanmei, J. Fibre Sci., 28, 509 (2010).

    CAS  Article  Google Scholar 

  28. K. Wu, Y. Hu, L. Song, H. Lu, and Z. Wang, Ind. Eng. Chem. Res., 48, 3150 (2009).

    CAS  Article  Google Scholar 

  29. Z. L. Ma, J. G. Gao, and L. G. Bai, J. Appl. Polym. Sci., 92, 1388 (2004).

    CAS  Article  Google Scholar 

  30. S. Bourbigot, M. L. Bras, R. Delobel, P. Breant, and J. M. Tremillon, Polym. Degrad. Stabil., 54, 275 (1996).

    CAS  Article  Google Scholar 

  31. I. Ravadits, A. Tóth, G. Marosi, A. Márton, and A. Szép, Polym. Degrad. Stabil., 74, 419 (2001).

    CAS  Article  Google Scholar 

  32. E. Gallo, B. Schartel, D. Acierno, and P. Russo, Eur. Polym. J., 47, 1390 (2011).

    CAS  Article  Google Scholar 

  33. E. Gallo, U. Braun, B. Schartel, P. Russo, and D. Acierno, Polym. Degrad. Stabil., 94, 12245 (2009).

    Article  Google Scholar 

  34. N. Li, Y. Xia, Z. Mao, L. Wang, Y. Guan, and A. Zheng, Polym. Degrad. Stabil., 87, 1737 (2012).

    Article  Google Scholar 

  35. Y. Li, B. Li, J. Dai, H. Jia, and S. Gao, Polym. Degrad. Stabil., 93, 9 (2008).

    CAS  Article  Google Scholar 

  36. F. Gao, L. Tong, and Z. Fang, Polym. Degrad. Stabil., 91, 1295 (2006).

    CAS  Article  Google Scholar 

  37. Y. Halpern, U.S. Patent, 4154930 (1979).

    Google Scholar 

  38. G. Fontaine, S. Bourbigot, and S. Duquesne, Polym. Degrad. Stabil., 93, 68 (2008).

    CAS  Article  Google Scholar 

  39. R. M. Livshits and G. I. Stanchenko, Nauch-Issled Tr., 22, 317 (1969).

    CAS  Google Scholar 

  40. H. L. Needles, J. Cons. Prod. Flamm., 4, 156 (1977).

    CAS  Google Scholar 

  41. S. Zhang and J. Wang, Gaofenzi Cailiao Kexue Yu Gongchong, 16, 99 (2000).

    CAS  Google Scholar 

  42. S. Zhang, J. Wang, L. Q. Xie, and C. L. Wen, Chin. Sci. Bull., 45, 322 (2000).

    CAS  Article  Google Scholar 

  43. S. Zhang and J. Wang, J. Fire Sci., 15, 68 (1997).

    Article  Google Scholar 

  44. L. Ferry, C. J. M. Lopez, C. Chivas, G. Mac Way Hoy, and H. Dvir, Polym. Degrad. Stabil., 74, 449 (2001).

    CAS  Article  Google Scholar 

  45. L. B. Manfredi, E. S. Rodriguez, M. W. Przybylak, and A. Vazquez, Polym. Degrad. Stabil., 91, 255 (2006).

    CAS  Article  Google Scholar 

  46. E. Baysal, M. K. Yalinkilic, M. Altinok, A. Sonmez, H. Peker, and M. Colak, Constr. Build. Mater., 21, 1879 (2007).

    Article  Google Scholar 

  47. V. J. Fernandes Jr., A. S. Araujo, V. A. Fonseca, N. S. Fernandes, and D. R. Silva, Thermochim Acta, 392, 71 (2002).

    Article  Google Scholar 

  48. B. K. Kandola, R. Horrocks, P. Myler, and D. Blai, J. Appl. Polym. Sci., 88, 2511 (2003).

    CAS  Article  Google Scholar 

  49. B. Perret, B. Schartel, K. Stob, M. Ciesielski, J. Derderichs, M. Doring, and J. Kramer, Eur. Polym. J., 47, 1081 (2011).

    CAS  Article  Google Scholar 

  50. N. M. Abdullah and I. Ahmad, Sains Malaysiana, 42, 811 (2013).

    CAS  Google Scholar 

  51. P. M. Hergenrother, C. M. Thompson, G. J. Smith, J. W. Connell, J. A. Hinkley, R. E. Lyon, and R. Moulton, Polymer, 46, 5012 (2005).

    CAS  Article  Google Scholar 

  52. C. M. Thompson, J. G. Smith Jr., J. W. Connell, P. M. Hergenrother, and R. E. Lyon, “Flame Retardant Epoxy Resins”, pp.1–16, National Aeronautics and Space Administration Langley Research Center, Virginia, 2004.

    Google Scholar 

  53. S. Y. Lu and I. Hamerton, Prog. Polym. Sci., 27, 1661 (2002).

    CAS  Article  Google Scholar 

  54. D. Derouet, F. Morvan, and J. C. Brosse, J. Appl. Polym. Sci., 62, 1855 (1996).

    CAS  Article  Google Scholar 

  55. A. Toldy, B. Szolnoki, and G. Marosi, Polym. Degrad. Stabil., 96, 371 (2011).

    CAS  Article  Google Scholar 

  56. F. Laoutid, L. Bonnaud, L. Alexandre, J. M. Lopez-Cuesta, and P. Dubois, Mater. Sci. Eng. R-Rep., 63, 100 (2009).

    Article  Google Scholar 

  57. A. Laachachi, M. Cochez, M. Ferriol, M. J. Lopez-Cuesta, and E. Leroy, Mater. Lett., 59, 36 (2005).

    CAS  Article  Google Scholar 

  58. S. Mishra, S. H. Sonawane, R. P. Singh, A. Bendale, and K. Patil, J. Appl. Polym. Sci., 94, 116 (2004).

    CAS  Article  Google Scholar 

  59. M. Murariu, L. Bonnaud, P. Yoann, G. Fontaine, S. Bourbigot, and P. Dubois, Polym. Degrad. Stabil., 95, 374 (2010).

    CAS  Article  Google Scholar 

  60. L. M. Bras, S. Bourbigot, C. Delporte, C. Siat, and L. Y. Tallec, Fire Mater, 20, 191 (1996).

    Article  Google Scholar 

  61. M. Jimenez, S. Duquesne, and S. Bourbigot, Polym. Adv. Technol., 23, 130 (2012).

    CAS  Article  Google Scholar 

  62. B. Gardelle, S. Duquesne, V. Rerat, and S. Bourbigot, Polym. Adv. Technol., 24, 62 (2013).

    CAS  Article  Google Scholar 

  63. M. Jimenez, S. Bellayer, B. Revel, S. Duquesne, and S. Bourbigot, Ind. Eng. Chem. Res., 52, 729 (2012).

    Article  Google Scholar 

  64. D. E. Weil, J. Fire Sci., 29, 259 (2011).

    CAS  Article  Google Scholar 

  65. S. Liang, N. M. Neisius, and S. Gaan, Prog. Org. Coat., 76, 1642 (2013).

    CAS  Article  Google Scholar 

  66. T. M. Albdiry, I. A. Almosawi, and F. B. Yousif, J. Eng. Sci. Technol., 7, 351 (2012).

    Google Scholar 

  67. J. W. Gu, C. G. Zhang, L. S. Dong, Y. Q. Zhang, and J. Kong, Surf. Coat. Technol., 201, 7835 (2007).

    CAS  Article  Google Scholar 

  68. E. Kandare, C. Chukwudolue, and B. K. Kandola, “Institute for Materials Research and Innovation”, Vol. 71, p.1, University of Bolton, 2010.

    Google Scholar 

  69. G. L. Hanu, G. P. Simon, J. Mansouri, R. P. Burford, and G. P. Cheng, J. Mater Process Technol., 13, 401 (2004).

    Article  Google Scholar 

  70. S. Feih, A. P. Mouritz, Z. Mathys, and A. G. Gibson, J. Fire Sci., 28, 141 (2010).

    CAS  Article  Google Scholar 

  71. U. Sorathia, C. M. Rollhauser, and W. A. Hughes, Fire Mater, 16, 119 (1992).

    CAS  Article  Google Scholar 

  72. J. Yang, J. Z. Liang, and C. Y. Tang, Polym. Test., 28, 907 (2009).

    CAS  Article  Google Scholar 

  73. B. K. Kandola, A. R. Horrocksa, P. Mylera, and D. Blair, Compos. Pt. A-Appl. Sci. Manuf., 34, 863 (2003).

    Article  Google Scholar 

  74. R. Kozlowski and M. Wladyka-Przybylak, Polym. Adv. Technol., 19, 446 (2008).

    CAS  Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Apurba Das.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bar, M., Alagirusamy, R. & Das, A. Flame retardant polymer composites. Fibers Polym 16, 705–717 (2015). https://doi.org/10.1007/s12221-015-0705-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0705-6

Keywords

  • Polymer composites
  • Flame retardant composites
  • Fire performance
  • Advance composites
  • Novel composites