Skip to main content
Log in

Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites

  • Communication
  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The tensile properties of chemically treated jute fiber reinforced polyethylene/clay nanocomposites were investigated. Nanocomposites were prepared using hot press moulding technique by varying jute fiber loading (5, 10, 15 and 20 wt%) for both treated and untreated fibers. Raw jute fibers were chemically treated with benzene diazonium salt to increase their compatibility with the polyethylene matrix. Physical and mechanical properties were subsequently characterized. Fourier transform infrared (FTIR) spectroscopy and scanning electron microscopy (SEM) analysis was utilized to study physical properties. Tensile test was conducted for mechanical characterization. FTIR and SEM study showed interfacial interaction among jute fiber, polyethylene and nanoclay. It was observed that at optimum fiber content (15 wt%), treated composites exhibited improvements in tensile strength and modulus by approximately 20 % and 37 % respectively over the raw ones. On the other hand, this composite exhibited improvements in tensile strength and modulus by approximately 8 % and 15 % respectively over the composites without nanoclay. However, treated jute fiber reinforced composites showed better tensile properties compared with untreated ones and also nanoclay incorporated composites enhanced higher tensile properties compared without nanoclay ones.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. M. A. Dweib, B. Hu, A. O’Donnell, H. W. Shenton, and R. P. Wool, Compos. Struct., 63, 147 (2004).

    Article  Google Scholar 

  2. A. O’Donnell, M. A. Dwieb, and R. P. Wool, Compos. Sci. Technol., 64, 1135 (2004).

    Article  Google Scholar 

  3. T. M. Gowda, A. C. B. Naidu, and R. Chhaya, Compos. Pt. A-Appl. Sci. Manuf., 30, 277 (1999).

    Article  Google Scholar 

  4. A. N. Shah and S. C. Lakkad, Fibre Sci. Technol., 15, 41 (1981).

    Article  Google Scholar 

  5. X. Li, L. G. Tabil, and S. Panigrahi, J. Polym. Environ., 15, 25 (2007).

    Article  Google Scholar 

  6. F. Khan and S. R. Ahmad, Polym. Degrad. Stabil., 52, 335 (1996).

    Article  CAS  Google Scholar 

  7. A. K. Bledzki, S. Reihmane, and J. Gassan, J. Appl. Polym. Sci., 59, 1329 (1996).

    Article  CAS  Google Scholar 

  8. P. J. Herrera-Franco and A. Valadez-Gonzalez, Compos. Pt. A-Appl. Sci. Manuf., 35, 339 (2004).

    Article  Google Scholar 

  9. M. A. Sawpan, K. L. Pickering, and A. Fernyhough, Compos. Pt. A-Appl. Sci. Manuf., 42, 888 (2011).

    Article  Google Scholar 

  10. Y. Seki, Mater. Sci. Eng. A-Struct. Mater. Prop. Microstruct. Process., 508, 247 (2009).

    Article  Google Scholar 

  11. F. Corrales, F. Vilaseca, M. Llop, J. Girones, J. A. Mendez, and P. Mutje, J. Hazard. Mater., 144, 730 (2007).

    Article  CAS  Google Scholar 

  12. E. Bozaci, K. Sever, A. Demir, Y. Seki, M. Sarikanat, and E. Ozdogan, Fiber. Polym., 10, 781 (2009).

    Article  CAS  Google Scholar 

  13. J. Gassan and A. K. Bledzki, “Proceedings of ICCM-11”, Gold Coast, Australia, 1997.

    Google Scholar 

  14. D. N. Saheb and J. P. Jog, Adv. Polym. Technol., 18, 351 (1999)

    Article  CAS  Google Scholar 

  15. J. A. Brydson, “Plastic Materials”, 3rd ed., Newnes Butterworths, London, 1975.

    Google Scholar 

  16. M. J. Miah, F. Ahmed, A. Hossain, A. H. Khan, and M. A. Khan, Polymer Plast. Tech. Eng., 44, 1443 (2005).

    Article  CAS  Google Scholar 

  17. J. Sandler, P. Werner, M. S. P. Shaffer, V. Denchuk, V. Altstadt, and A. H. Windle, Compos. Pt. A-Appl. Sci. Manuf., 33, 1033 (2002).

    Article  Google Scholar 

  18. B. K. Deka and T. K. Maji, Compos. Sci. Technol., 70, 1755 (2010).

    Article  CAS  Google Scholar 

  19. M. W. Dewan, M. K. Hossain, M. Hosur, and S. Jeelani, J. Appl. Polym. Sci., 128, 4110 (2013).

    Article  CAS  Google Scholar 

  20. M. K. Hossain, M. W. Dewan, M. Hosur, and S. Jeelani, Compos. Pt. B-Eng., 42, 1701 (2011).

    Article  Google Scholar 

  21. H. Ismail, M. Edyhan, and B. Wirjosentono, Polym. Test., 21, 139 (2002).

    Article  CAS  Google Scholar 

  22. M. Ibrahim, Cellulose, 9, 337 (2002).

    Article  CAS  Google Scholar 

  23. ASTM Standard D 638, “Standard Test Methods for Tensile Properties of Plastics”, Annual Book of ASTM Standard, 2002.

    Google Scholar 

  24. M. A. Khan, M. M. Hassan, and L. T. Drzal, Compos. Pt. A-Appl. Sci. Manuf., 36, 71 (2005).

    Article  Google Scholar 

  25. P. Ganan, R. Zulunga, A. Restrepo, J. Labidi, and I. Mondragon, Biores. Technol., 99, 486 (2008).

    Article  CAS  Google Scholar 

  26. M. M. Haque, M. Hasan, M. S. Islam, and M. E. Ali, Bioresour. Technol., 100, 4903 (2009).

    Article  CAS  Google Scholar 

  27. Y. Bulut and A. Aksit, Cellulose, 20, 3155 (2013).

    Article  CAS  Google Scholar 

  28. L. Y. Mwaikambo and M. P. Ansell, J. Appl. Polym. Sci., 84, 2222 (2002).

    Article  CAS  Google Scholar 

  29. M. R. Rahman, M. N. Islam, M. M. Haque, S. Hamdan, and A. S. Ahmed, BioRes., 5, 854 (2010).

    CAS  Google Scholar 

  30. M. Iman, K. K. Bania, and T. K. Maji, Ind. Eng. Chem. Res., 52, 6969 (2013).

    Article  CAS  Google Scholar 

  31. M. R. Rahman, M. Hasan, M. M. Huque, and M. N. Islam, J. Reinf. Plast. Compos., 29, 445 (2010).

    Article  CAS  Google Scholar 

  32. F. Vilaseca, J. A. Mendez, A. Pelach, M. Llop, N. Canigueral, J. Girones, X. Turon, and P. Mutje, Process Biochem., 42, 329 (2007).

    Article  CAS  Google Scholar 

  33. D. Ray, S. Sengupta, S. P. Sengupta, A. K. Mohanty, and M. Misra, Macromol. Mater. Eng., 292, 1075 (2007).

    Article  CAS  Google Scholar 

  34. A. K. Mohanty, M. A. Khan, and G. Hinrichsen, Compos. Sci. Technol., 60, 1115 (2000).

    Article  CAS  Google Scholar 

  35. M. N. Islam, M. M. Haque, and M. M. Huque, Ind. Eng. Chem. Res., 48, 10491 (2009).

    Article  CAS  Google Scholar 

  36. G. Gorrasi, M. Tortora, V. Vittoria, E. Pollet, B. Lepoittevin, and M. Alexandre, Polymer, 44, 2271 (2003).

    Article  CAS  Google Scholar 

  37. Y. K. Hamidi, L. Aktas, and M. C. Altan, J. Thermop. Compos. Mater., 21, 141 (2008).

    Article  CAS  Google Scholar 

  38. E. Bozkurt, E. Kaya, and M. Tanoglu, Compos. Sci. Technol., 67, 3394 (2007).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Md. Faruk Hossen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hossen, M.F., Hamdan, S., Rahman, M.R. et al. Effect of fiber treatment and nanoclay on the tensile properties of jute fiber reinforced polyethylene/clay nanocomposites. Fibers Polym 16, 479–485 (2015). https://doi.org/10.1007/s12221-015-0479-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0479-x

Keywords

Navigation