Fibers and Polymers

, Volume 16, Issue 2, pp 308–318 | Cite as

Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets

  • Yan Ge
  • Mingqiao Ge


For ideal wound-healing dressings, the chitosan-based films loaded with tea tree oil droplets were successfully fabricated by solution casting method. Tea tree oil emulsion droplets of about 200–300 nm in size were dispersed and immersed in chitosan films. Fourier transform infrared spectroscopy and differential scanning calorimetry measurement illustrated that the hydrogen-bonding interaction was formed between the amino and hydroxyl groups of chitosan and the hydroxyl groups of tea tree oil components to destroy the original hydrogen bond between chitosan molecules and change the physico-chemical properties of the films. With the increasing ratio of chitosan to tea tree oil, fluid absorption gradually decreased and water vapor permeability increased. The film with chitosan/tea tree oil ratio of 20:4 had identical hemostatic effect and non-cytotoxicity, and showed sustained growth inhibitory effect against S. aureus, E. coli and C. albicans. These results suggested that tea tree oil droplets played an important role in antimicrobial films and had a good potential to be incorporated into chitosan-based films which can be used in wound healing applications.


Chitosan Tea tree oil droplets Antimicrobial activity Sustained release Blood clotting 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    D. Altiok, E. Altiok, and F. Tihminlioglu, J. Mater. Sci.-Mater. Med., 21, 2227 (2010).CrossRefGoogle Scholar
  2. 2.
    S. Aoyagi, H. Onishi, and Y. Machida, Int. J. Pharm., 330, 138 (2007).CrossRefGoogle Scholar
  3. 3.
    Z. Karami, I. Rezaeian, P. Zahedi, and M. Abdollahi, J. Appl. Polym. Sci., 129, 756 (2013).CrossRefGoogle Scholar
  4. 4.
    P. Anaya, G. Cardenas, V. Lavayen, A. Garcia, and C. O’Dwyer, J. Appl. Polym. Sci., 128, 3939 (2013).CrossRefGoogle Scholar
  5. 5.
    Y. Xu, K. M. Kim, M. A. Hanna, and D. Nag, Ind. Crop. Prod., 21, 185 (2005).CrossRefGoogle Scholar
  6. 6.
    Y. M. Qin, J. Appl. Polym. Sci., 107, 993 (2008).CrossRefGoogle Scholar
  7. 7.
    A. E. Poor, U. K. Ercan, A. Yost, A. D. Brooks, and S. G. Joshi, Surg. Infect., 15, 233 (2014).CrossRefGoogle Scholar
  8. 8.
    A. Yu, H. Niiyama, S. Kondo, A. Yamamoto, R. Suzuki, and Y. Kuroyanagi, J. Biomater. Sci. Polym. Ed., 24, 1015 (2013).CrossRefGoogle Scholar
  9. 9.
    H. S. Whang, W. Kirsch, Y. H. Zhu, C. Z. Yang, and S. M. Hudson, Polym. Rev., 45, 309 (2005).Google Scholar
  10. 10.
    J. Kim, Z. J. Cai, H. S. Lee, G. S. Choi, D. H. Lee, and C. Jo, J. Polym. Res., 18, 739 (2011).CrossRefGoogle Scholar
  11. 11.
    B. S. Anisha, R. Biswas, K. P. Chennazhi, and R. Jayakumar, Int. J. Biol. Macromol., 62, 310 (2013).CrossRefGoogle Scholar
  12. 12.
    R. Y. Zhang, W. Y. Xu, and F. Q. Jiang, Fiber. Polym., 13, 571 (2012).CrossRefGoogle Scholar
  13. 13.
    M. Kucharska, A. Niekraszewicz, M. Wisniewska-Wrona, and K. Brzoza-Malczewska, Fibres Text. East. Eur., 16, 109 (2008).Google Scholar
  14. 14.
    C. Chen, L. Liu, T. Huang, Q. Wang, and Y. Fang, Int. J. Biol. Macromol., 62, 188 (2013).CrossRefGoogle Scholar
  15. 15.
    Y. C. Chung, H. L. Wang, Y. M. Chen, and S. L. Li, Bioresour. Technol., 88, 179 (2003).CrossRefGoogle Scholar
  16. 16.
    G. Gil, S. del Monaco, P. Cerrutti, and M. Galvagno, Biotechnol. Lett., 26, 569 (2004).CrossRefGoogle Scholar
  17. 17.
    L. J. R. Foster and J. Butt, Biotechnol. Lett., 33, 417 (2011).CrossRefGoogle Scholar
  18. 18.
    T. Phaechamud and J. Charoenteeraboon, AAPS Pharm. Scitech., 9, 829 (2008).CrossRefGoogle Scholar
  19. 19.
    S. Rossi, M. Marciello, G. Sandri, F. Ferrari, M. C. Bonferoni, A. Papetti, C. Caramella, C. Dacarro, and P. Grisoli, Pharm. Dev. Technol., 12, 415 (2007).CrossRefGoogle Scholar
  20. 20.
    E. Marsich, F. Bellomo, G. Turco, A. Travan, I. Donati, and S. Paoletti, J. Mater. Sci. Mater. Med., 24, 1799 (2013).CrossRefGoogle Scholar
  21. 21.
    L. Sanchez-Gonzalez, C. Gonzalez-Martinez, A. Chiralt, and M. Chafer, J. Food Eng., 98, 443 (2010).CrossRefGoogle Scholar
  22. 22.
    F. L. Mi, Y. B. Wu, S. S. Shyu, J. Y. Schoung, Y. B. Huang, Y. H. Tsai, and J. Y. Hao, J. Biomed. Mater. Res. Part A., 59, 438 (2002).CrossRefGoogle Scholar
  23. 23.
    Y. Pranoto, V. M. Salokhe, and S. K. Rakshit, Food Res. Int., 38, 267 (2005).CrossRefGoogle Scholar
  24. 24.
    F. Solórzano-Santos and M. G. Miranda-Novales, Curr. Opin. Biotechnol., 23, 136 (2012).CrossRefGoogle Scholar
  25. 25.
    H. J. Dorman and S. G. Deans, J. Appl. Microbiol., 88, 308 (2000).CrossRefGoogle Scholar
  26. 26.
    S. Prabuseenivasan, M. Jayakumar, and S. Ignacimuthu, BMC Complement. Altern. Med., 6, 39 (2006).CrossRefGoogle Scholar
  27. 27.
    K. R. Zodrow, J. D. Schiffman, and M. Elimelech, Langmuir, 28, 13993 (2012).CrossRefGoogle Scholar
  28. 28.
    M. H. Shukr and G. F. Metwally, Trop. J. Pharm. Res., 12, 877 (2013).CrossRefGoogle Scholar
  29. 29.
    M. Sherry, C. Charcosset, H. Fessi, and H. Greige-Gerges, J. Liposome Res., 23, 268 (2013).CrossRefGoogle Scholar
  30. 30.
    A. Nostro, R. Scaffaro, M. D’Arrigo, L. Botta, A. Filocamo, A. Marino, and G. Bisignano, Appl. Microbiol. Biotechnol., 97, 9515 (2013).CrossRefGoogle Scholar
  31. 31.
    I. Liakos, L. Rizzello, D. J. Scurr, P. P. Pompa, I. S. Bayer, and A. Athanassiou, Int. J. Pharm., 463, 137 (2014).CrossRefGoogle Scholar
  32. 32.
    R. Khajavi, M. Abbasipour, M. G. Barzi, A. Rashidi, M. K. Rahimi, and H. H. Mirzababa, Adv. Polym. Technol., 33, 21408 (2014).CrossRefGoogle Scholar
  33. 33.
    K. R. Riella, R. R. Marinho, J. S. Santos, R. N. Pereira-Filho, J. C. Cardoso, R. L. Albuquerque-Junior, and S. M. Thomazzi, J. Ethnopharmacol., 143, 656 (2012).CrossRefGoogle Scholar
  34. 34.
    C. F. Carson, K. A. Hammer, and T. V. Riley, Clin. Microbiol. Rev., 19, 50 (2006).CrossRefGoogle Scholar
  35. 35.
    G. Lang and G. Buchbauer, Flavour Frag. J., 27, 13 (2012).CrossRefGoogle Scholar
  36. 36.
    M. Edmondson, N. Newall, K. Carville, J. Smith, T. V. Riley, and C. F. Carson, Int. Wound J., 8, 375 (2011).CrossRefGoogle Scholar
  37. 37.
    M. Y. Bai, T. C. Chou, J. C. Tsai, and W. C. Yu, J. Biomed. Mater. Res. Part A., 102, 2324 (2014).CrossRefGoogle Scholar
  38. 38.
    K. A. Hammer, C. F. Carson, T. V. Riley, and J. B. Nielsen, Food Chem. Toxicol., 44, 616 (2006).CrossRefGoogle Scholar
  39. 39.
    A. Cerempei, E. I. Muresan, and N. Cimpoesu, J. Essent. Oil Res., 26, 267 (2014).CrossRefGoogle Scholar
  40. 40.
    Y. M. Lee, S. S. Kim, M. H. Park, K. W. Song, Y. K. Sung, and I. K. Kang, J. Mater. Sci.-Mater. Med., 11, 817 (2000).CrossRefGoogle Scholar
  41. 41.
    T. K. Maji and M. R. Hussain, J. Appl. Polym. Sci., 111, 779 (2009).Google Scholar
  42. 42.
    B. Ocak, G. Gulumser, and E. Baloglu, J. Essent. Oil Res., 23, 58 (2011).CrossRefGoogle Scholar
  43. 43.
    L. Higueras, G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. Rollini, Int. J. Food Microbiol., 165, 339 (2013).CrossRefGoogle Scholar
  44. 44.
    P. Tongnuanchan, S. Benjakul, and T. Prodpran, Food Hydrocolloids, 41, 33 (2014).CrossRefGoogle Scholar
  45. 45.
    P. Tongnuanchan, S. Benjakul, and T. Prodpran, J. Food Eng., 117, 350 (2013).CrossRefGoogle Scholar
  46. 46.
    B. Gupta, A. Arora, S. Saxena, and M. S. Alam, Polym. Adv. Technol., 20, 58 (2009).CrossRefGoogle Scholar
  47. 47.
    L. S. Guinesi and E. T. G. Cavalheiro, Thermochim. Acta, 444, 128 (2006).CrossRefGoogle Scholar
  48. 48.
    J. M. Yang and H. T. Lin, J. Membr. Sci., 243, 1 (2004).CrossRefGoogle Scholar
  49. 49.
    P. Srinivasa, M. Ramesh, K. Kumar, and R. Tharanathan, J. Food Eng., 63, 79 (2004).CrossRefGoogle Scholar
  50. 50.
    M. Moradi, H. Tajik, S. M. Razavi Rohani, A. R. Oromiehie, H. Malekinejad, J. Aliakbarlu, and M. Hadian, Lwt-Food Sci. Technol., 46, 477 (2012).CrossRefGoogle Scholar
  51. 51.
    F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).CrossRefGoogle Scholar
  52. 52.
    T. Maji, I. Baruah, S. Dube, and M. Hussain, Bioresour. Technol., 98, 840 (2007).CrossRefGoogle Scholar
  53. 53.
    S. Y. Ong, J. Wu, S. M. Moochhala, M. H. Tan, and J. Lu, Biomaterials, 29, 4323 (2008).CrossRefGoogle Scholar
  54. 54.
    P. R. Klokkevold, D. S. Lew, D. G. Ellis, and C. N. Bertolami, J. Oral Maxillofac. Surg., 49, 858 (1991).CrossRefGoogle Scholar
  55. 55.
    L. Wang, F. Liu, Y. Jiang, Z. Chai, P. Li, Y. Cheng, H. Jing, and X. Leng, J. Agric. Food Chem., 59, 12411 (2011).CrossRefGoogle Scholar
  56. 56.
    C. W. Lou, C. W. Lin, Y. S. Chen, C. H. Yao, Z. S. Lin, C. Y. Chao, and J. H. Lin, Text. Res. J., 78, 248 (2008).CrossRefGoogle Scholar

Copyright information

© The Korean Fiber Society and Springer Science+Business Media Dordrecht 2015

Authors and Affiliations

  1. 1.Key Laboratory of Science and Technology of Eco-Textiles, Ministry of EducationJiangnan UniversityWuxiChina
  2. 2.College of Textiles and ClothingJiangnan UniversityWuxiChina

Personalised recommendations