Skip to main content
Log in

Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

For ideal wound-healing dressings, the chitosan-based films loaded with tea tree oil droplets were successfully fabricated by solution casting method. Tea tree oil emulsion droplets of about 200–300 nm in size were dispersed and immersed in chitosan films. Fourier transform infrared spectroscopy and differential scanning calorimetry measurement illustrated that the hydrogen-bonding interaction was formed between the amino and hydroxyl groups of chitosan and the hydroxyl groups of tea tree oil components to destroy the original hydrogen bond between chitosan molecules and change the physico-chemical properties of the films. With the increasing ratio of chitosan to tea tree oil, fluid absorption gradually decreased and water vapor permeability increased. The film with chitosan/tea tree oil ratio of 20:4 had identical hemostatic effect and non-cytotoxicity, and showed sustained growth inhibitory effect against S. aureus, E. coli and C. albicans. These results suggested that tea tree oil droplets played an important role in antimicrobial films and had a good potential to be incorporated into chitosan-based films which can be used in wound healing applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. D. Altiok, E. Altiok, and F. Tihminlioglu, J. Mater. Sci.-Mater. Med., 21, 2227 (2010).

    Article  CAS  Google Scholar 

  2. S. Aoyagi, H. Onishi, and Y. Machida, Int. J. Pharm., 330, 138 (2007).

    Article  CAS  Google Scholar 

  3. Z. Karami, I. Rezaeian, P. Zahedi, and M. Abdollahi, J. Appl. Polym. Sci., 129, 756 (2013).

    Article  CAS  Google Scholar 

  4. P. Anaya, G. Cardenas, V. Lavayen, A. Garcia, and C. O’Dwyer, J. Appl. Polym. Sci., 128, 3939 (2013).

    Article  CAS  Google Scholar 

  5. Y. Xu, K. M. Kim, M. A. Hanna, and D. Nag, Ind. Crop. Prod., 21, 185 (2005).

    Article  CAS  Google Scholar 

  6. Y. M. Qin, J. Appl. Polym. Sci., 107, 993 (2008).

    Article  CAS  Google Scholar 

  7. A. E. Poor, U. K. Ercan, A. Yost, A. D. Brooks, and S. G. Joshi, Surg. Infect., 15, 233 (2014).

    Article  Google Scholar 

  8. A. Yu, H. Niiyama, S. Kondo, A. Yamamoto, R. Suzuki, and Y. Kuroyanagi, J. Biomater. Sci. Polym. Ed., 24, 1015 (2013).

    Article  CAS  Google Scholar 

  9. H. S. Whang, W. Kirsch, Y. H. Zhu, C. Z. Yang, and S. M. Hudson, Polym. Rev., 45, 309 (2005).

    Google Scholar 

  10. J. Kim, Z. J. Cai, H. S. Lee, G. S. Choi, D. H. Lee, and C. Jo, J. Polym. Res., 18, 739 (2011).

    Article  CAS  Google Scholar 

  11. B. S. Anisha, R. Biswas, K. P. Chennazhi, and R. Jayakumar, Int. J. Biol. Macromol., 62, 310 (2013).

    Article  CAS  Google Scholar 

  12. R. Y. Zhang, W. Y. Xu, and F. Q. Jiang, Fiber. Polym., 13, 571 (2012).

    Article  CAS  Google Scholar 

  13. M. Kucharska, A. Niekraszewicz, M. Wisniewska-Wrona, and K. Brzoza-Malczewska, Fibres Text. East. Eur., 16, 109 (2008).

    CAS  Google Scholar 

  14. C. Chen, L. Liu, T. Huang, Q. Wang, and Y. Fang, Int. J. Biol. Macromol., 62, 188 (2013).

    Article  CAS  Google Scholar 

  15. Y. C. Chung, H. L. Wang, Y. M. Chen, and S. L. Li, Bioresour. Technol., 88, 179 (2003).

    Article  CAS  Google Scholar 

  16. G. Gil, S. del Monaco, P. Cerrutti, and M. Galvagno, Biotechnol. Lett., 26, 569 (2004).

    Article  CAS  Google Scholar 

  17. L. J. R. Foster and J. Butt, Biotechnol. Lett., 33, 417 (2011).

    Article  CAS  Google Scholar 

  18. T. Phaechamud and J. Charoenteeraboon, AAPS Pharm. Scitech., 9, 829 (2008).

    Article  CAS  Google Scholar 

  19. S. Rossi, M. Marciello, G. Sandri, F. Ferrari, M. C. Bonferoni, A. Papetti, C. Caramella, C. Dacarro, and P. Grisoli, Pharm. Dev. Technol., 12, 415 (2007).

    Article  CAS  Google Scholar 

  20. E. Marsich, F. Bellomo, G. Turco, A. Travan, I. Donati, and S. Paoletti, J. Mater. Sci. Mater. Med., 24, 1799 (2013).

    Article  CAS  Google Scholar 

  21. L. Sanchez-Gonzalez, C. Gonzalez-Martinez, A. Chiralt, and M. Chafer, J. Food Eng., 98, 443 (2010).

    Article  CAS  Google Scholar 

  22. F. L. Mi, Y. B. Wu, S. S. Shyu, J. Y. Schoung, Y. B. Huang, Y. H. Tsai, and J. Y. Hao, J. Biomed. Mater. Res. Part A., 59, 438 (2002).

    Article  CAS  Google Scholar 

  23. Y. Pranoto, V. M. Salokhe, and S. K. Rakshit, Food Res. Int., 38, 267 (2005).

    Article  CAS  Google Scholar 

  24. F. Solórzano-Santos and M. G. Miranda-Novales, Curr. Opin. Biotechnol., 23, 136 (2012).

    Article  Google Scholar 

  25. H. J. Dorman and S. G. Deans, J. Appl. Microbiol., 88, 308 (2000).

    Article  CAS  Google Scholar 

  26. S. Prabuseenivasan, M. Jayakumar, and S. Ignacimuthu, BMC Complement. Altern. Med., 6, 39 (2006).

    Article  Google Scholar 

  27. K. R. Zodrow, J. D. Schiffman, and M. Elimelech, Langmuir, 28, 13993 (2012).

    Article  CAS  Google Scholar 

  28. M. H. Shukr and G. F. Metwally, Trop. J. Pharm. Res., 12, 877 (2013).

    Article  Google Scholar 

  29. M. Sherry, C. Charcosset, H. Fessi, and H. Greige-Gerges, J. Liposome Res., 23, 268 (2013).

    Article  CAS  Google Scholar 

  30. A. Nostro, R. Scaffaro, M. D’Arrigo, L. Botta, A. Filocamo, A. Marino, and G. Bisignano, Appl. Microbiol. Biotechnol., 97, 9515 (2013).

    Article  CAS  Google Scholar 

  31. I. Liakos, L. Rizzello, D. J. Scurr, P. P. Pompa, I. S. Bayer, and A. Athanassiou, Int. J. Pharm., 463, 137 (2014).

    Article  CAS  Google Scholar 

  32. R. Khajavi, M. Abbasipour, M. G. Barzi, A. Rashidi, M. K. Rahimi, and H. H. Mirzababa, Adv. Polym. Technol., 33, 21408 (2014).

    Article  Google Scholar 

  33. K. R. Riella, R. R. Marinho, J. S. Santos, R. N. Pereira-Filho, J. C. Cardoso, R. L. Albuquerque-Junior, and S. M. Thomazzi, J. Ethnopharmacol., 143, 656 (2012).

    Article  CAS  Google Scholar 

  34. C. F. Carson, K. A. Hammer, and T. V. Riley, Clin. Microbiol. Rev., 19, 50 (2006).

    Article  CAS  Google Scholar 

  35. G. Lang and G. Buchbauer, Flavour Frag. J., 27, 13 (2012).

    Article  CAS  Google Scholar 

  36. M. Edmondson, N. Newall, K. Carville, J. Smith, T. V. Riley, and C. F. Carson, Int. Wound J., 8, 375 (2011).

    Article  Google Scholar 

  37. M. Y. Bai, T. C. Chou, J. C. Tsai, and W. C. Yu, J. Biomed. Mater. Res. Part A., 102, 2324 (2014).

    Article  Google Scholar 

  38. K. A. Hammer, C. F. Carson, T. V. Riley, and J. B. Nielsen, Food Chem. Toxicol., 44, 616 (2006).

    Article  CAS  Google Scholar 

  39. A. Cerempei, E. I. Muresan, and N. Cimpoesu, J. Essent. Oil Res., 26, 267 (2014).

    Article  CAS  Google Scholar 

  40. Y. M. Lee, S. S. Kim, M. H. Park, K. W. Song, Y. K. Sung, and I. K. Kang, J. Mater. Sci.-Mater. Med., 11, 817 (2000).

    Article  CAS  Google Scholar 

  41. T. K. Maji and M. R. Hussain, J. Appl. Polym. Sci., 111, 779 (2009).

    CAS  Google Scholar 

  42. B. Ocak, G. Gulumser, and E. Baloglu, J. Essent. Oil Res., 23, 58 (2011).

    Article  CAS  Google Scholar 

  43. L. Higueras, G. López-Carballo, P. Hernández-Muñoz, R. Gavara, and M. Rollini, Int. J. Food Microbiol., 165, 339 (2013).

    Article  CAS  Google Scholar 

  44. P. Tongnuanchan, S. Benjakul, and T. Prodpran, Food Hydrocolloids, 41, 33 (2014).

    Article  CAS  Google Scholar 

  45. P. Tongnuanchan, S. Benjakul, and T. Prodpran, J. Food Eng., 117, 350 (2013).

    Article  CAS  Google Scholar 

  46. B. Gupta, A. Arora, S. Saxena, and M. S. Alam, Polym. Adv. Technol., 20, 58 (2009).

    Article  CAS  Google Scholar 

  47. L. S. Guinesi and E. T. G. Cavalheiro, Thermochim. Acta, 444, 128 (2006).

    Article  CAS  Google Scholar 

  48. J. M. Yang and H. T. Lin, J. Membr. Sci., 243, 1 (2004).

    Article  CAS  Google Scholar 

  49. P. Srinivasa, M. Ramesh, K. Kumar, and R. Tharanathan, J. Food Eng., 63, 79 (2004).

    Article  Google Scholar 

  50. M. Moradi, H. Tajik, S. M. Razavi Rohani, A. R. Oromiehie, H. Malekinejad, J. Aliakbarlu, and M. Hadian, Lwt-Food Sci. Technol., 46, 477 (2012).

    Article  CAS  Google Scholar 

  51. F. L. Mi, S. S. Shyu, Y. B. Wu, S. T. Lee, J. Y. Shyong, and R. N. Huang, Biomaterials, 22, 165 (2001).

    Article  CAS  Google Scholar 

  52. T. Maji, I. Baruah, S. Dube, and M. Hussain, Bioresour. Technol., 98, 840 (2007).

    Article  CAS  Google Scholar 

  53. S. Y. Ong, J. Wu, S. M. Moochhala, M. H. Tan, and J. Lu, Biomaterials, 29, 4323 (2008).

    Article  CAS  Google Scholar 

  54. P. R. Klokkevold, D. S. Lew, D. G. Ellis, and C. N. Bertolami, J. Oral Maxillofac. Surg., 49, 858 (1991).

    Article  CAS  Google Scholar 

  55. L. Wang, F. Liu, Y. Jiang, Z. Chai, P. Li, Y. Cheng, H. Jing, and X. Leng, J. Agric. Food Chem., 59, 12411 (2011).

    Article  CAS  Google Scholar 

  56. C. W. Lou, C. W. Lin, Y. S. Chen, C. H. Yao, Z. S. Lin, C. Y. Chao, and J. H. Lin, Text. Res. J., 78, 248 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingqiao Ge.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Y., Ge, M. Sustained broad-spectrum antimicrobial and haemostatic chitosan-based film with immerged tea tree oil droplets. Fibers Polym 16, 308–318 (2015). https://doi.org/10.1007/s12221-015-0308-2

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0308-2

Keywords

Navigation