Skip to main content
Log in

Enhanced bioactivity of osteoblast-like cells on poly(lactic acid)/poly(methyl methacrylate)/nano-hydroxyapatite scaffolds for bone tissue engineering

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bone tissue engineering has great potential but requires an appropriate substrate with good bioactivity. In this study, poly(lactic acid) (PLA)/poly(methyl methacrylate) (PMMA)/nano-hydroxyapatite (n-HA) hybrid nanofibrous scaffolds were fabricated via electrospinning. The morphologies of the scaffolds were observed by scanning electron microscopy, transmission electron microscopy and the structures of the scaffolds were measured by fourier transform infrared spectrum. After immersion in simulated body fluid, the more deposition of ball-like apatite can be observed on the surface of the hybrid PLA/PMMA/n-HA scaffold. In vitro degradation experiments showed that the less degradation occurred in the hybrid PLA/PMMA/n-HA scaffold. The studies of cell adhesion and growth capability were investigated by incubating the osteoblast-like cells (MG-63) in the scaffolds, which verified the addition of n-HA could promote the adhesion and proliferation of the Human osteoblast-like cells (MG-63). Hence, the electrospun hybrid PLA/PMMA/n-HA nanofibrous scaffold is a promising biomaterial, propitious to be a substrate for bone tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. A. K. Jaiswal, S. S. Kadam, V. P. Soni, and J. R. Bellare, Appl. Surf. Sci., 268, 477 (2013).

    Article  CAS  Google Scholar 

  2. L. Tian, M. P. Prabhakaran, X. Ding, and S. Ramakrishna, J. Biomater. Sci.-Polym. Ed., 24, 1952 (2013).

    Article  CAS  Google Scholar 

  3. M. Fröhlich, W. L. Grayson, L. Q. Wan, D. Marolt, M. Drobnic, and G. Vunjak-Novakovic, Curr. Stem Cell Res. Ther., 3, 254 (2008).

    Article  Google Scholar 

  4. M. P. Prabhakaran, J. Venugopal, and S. Ramakrishna, Acta Biomater., 5, 2884 (2009).

    Article  CAS  Google Scholar 

  5. W. J. Li, C. T. Laurencin, E. J. Caterson, R. S. Tuan, and F. K. Ko, J. Biomed. Mater. Res. Part B, 60, 613 (2002).

    Article  CAS  Google Scholar 

  6. S. L. Ishaug, G. M. Crane, M. J. Miller, A. W. Yasko, M. J. Yaszemski, and A. G. Mikos, J. Biomed. Mater. Res. Part B, 36, 17 (1997).

    Article  CAS  Google Scholar 

  7. T. J. Webster, R. W. Siegel, and R. Bizios, Biomaterials, 20, 1221 (1999).

    Article  CAS  Google Scholar 

  8. A. Frenot and I. S. Chronakis, Curr. Opin. Colloid Interface Sci., 8, 64 (2003).

    Article  CAS  Google Scholar 

  9. J. Du, X. Li, C. Yang, W. Li, W. Huang, R. Huang, X. Zhou, and H. Deng, Curr. Nanosci., 9, 8 (2013).

    CAS  Google Scholar 

  10. Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Tissue Eng., 11, 101 (2005).

    Article  Google Scholar 

  11. W. Huang, X. Li, Y. Xue, R. Huang, H. Deng, and Z. Ma, Int. J. Biol. Macromol., 53, 26 (2013).

    Article  Google Scholar 

  12. X. Wang, B. Ding, G. Sun, M. Wang, and J. Yu, Prog. Mater. Sci., 58, 1173 (2013).

    Article  CAS  Google Scholar 

  13. H. Deng, X. Zhou, X. Wang, C. Zhang, B. Ding, Q. Zhang, and Y. Du, Carbohydr. Polym., 80, 474 (2010).

    Article  CAS  Google Scholar 

  14. Y.-F. Goh, I. Shakir, and R. Hussain, J. Mater. Sci., 48, 3027 (2013).

    Article  CAS  Google Scholar 

  15. S. Liao, R. Murugan, C. K. Chan, and S. Ramakrishna, J. Mech. Behav. Biomed. Mater., 1, 252 (2008).

    Article  Google Scholar 

  16. R. P. Chaplin, A. J. Lee, R. M. Hooper, and M. Clarke, J. Mater. Sci.-Mater. Med., 17, 1433 (2006).

    Article  CAS  Google Scholar 

  17. H. Dong, V. Nyame, A. G. MacDiarmid, and W. E. Jones Jr., J. Polym. Sci. Part B: Polym. Phys., 42, 3934 (2004).

    Article  CAS  Google Scholar 

  18. W. F. Mousa, M. Kobayashi, S. Shinzato, M. Kamimura, M. Neo, S. Yoshihara, and T. Nakamura, Biomaterials, 21, 2137 (2000).

    Article  CAS  Google Scholar 

  19. C. Wu, Y. Ramaswamy, Y. Zhu, R. Zheng, R. Appleyard, A. Howard, and H. Zreiqat, Biomaterials, 30, 2199 (2009).

    Article  CAS  Google Scholar 

  20. J. Yuan, J. Shen, and I. K. Kang, Polym. Int., 57, 1188 (2008).

    Article  CAS  Google Scholar 

  21. P. Fratzl, H. S. Gupta, E. P. Paschalis, and P. Roschger, J. Mater. Chem., 14, 2115 (2004).

    Article  CAS  Google Scholar 

  22. H. Yuan, Y. Li, J. De Bruijn, K. De Groot, and X. Zhang, Biomaterials, 21, 1283 (2000).

    Article  CAS  Google Scholar 

  23. K. L. Kilpadi, P. L. Chang, and S. L. Bellis, J. Biomed. Mater. Res. Part B, 57, 258 (2001).

    Article  CAS  Google Scholar 

  24. R. Nirmala, K. T. Nam, D. K. Park, W. Baek, R. Navamathavan, and H. Y. Kim, Surf. Coat. Technol., 205, 174 (2010).

    Article  CAS  Google Scholar 

  25. C. Du, F. Z. Cui, X. D. Zhu, and K. de Groot, J. Biomed. Mater. Res. Part B, 44, 407 (1999).

    Article  CAS  Google Scholar 

  26. H.-W. Kim, J. C. Knowles, and H.-E. Kim, Biomaterials, 25, 1279 (2004).

    Article  CAS  Google Scholar 

  27. V. Thomas, D. R. Dean, M. V. Jose, B. Mathew, S. Chowdhury, and Y. K. Vohra, Biomacromolecules, 8, 631 (2007).

    Article  CAS  Google Scholar 

  28. R. L. Fischer, M. G. McCoy, and S. A. Grant, J. Mater. Sci. Mater. Med., 23, 1645 (2012).

    Article  CAS  Google Scholar 

  29. R. J. Kane and R. K. Roeder, J. Mech. Behav. Biomed. Mater., 7, 41 (2012).

    Article  CAS  Google Scholar 

  30. J. C. Antunes, J. M. Oliveira, R. L. Reis, J. M. Soria, J. L. Gomez-Ribelles, and J. F. Mano, J. Biomed. Mater. Res. Part A, 94, 856 (2010).

    CAS  Google Scholar 

  31. H. Liu, L. Zhang, P. Shi, Q. Zou, Y. Zuo, and Y. Li, J. Biomed. Mater. Res. Part B, 95, 36 (2010).

    Article  Google Scholar 

  32. H. Deng, X. Li, B. Ding, Y. Du, G. Li, J. Yang, and X. Hu, Carbohydr. Polym., 83, 973 (2011).

    Article  CAS  Google Scholar 

  33. W. Li, X. Li, W. Li, T. Wang, X. Li, S. Pan, and H. Deng, Eur. Polym. J., 48, 1846 (2012).

    Article  CAS  Google Scholar 

  34. D. Rabadjieva, S. Tepavitcharova, K. Sezanova, R. Gergulova, R. Titorenkova, O. Petrov, and E. Dyulgerova, Nanosci. Nanotechnol., 11, 182 (2011).

    Article  CAS  Google Scholar 

  35. H. Zhang, J. Bioact. Compat. Polym., 26, 590 (2011).

    Article  CAS  Google Scholar 

  36. X. Hou, G. Yin, X. Chen, X. Liao, Y. Yao, and Z. Huang, Appl. Surf. Sci., 257, 3417 (2011).

    Article  CAS  Google Scholar 

  37. H. Deng, X. Wang, P. Liu, B. Ding, Y. Du, G. Li, X. Hu, and J. Yang, Carbohydr. Polym., 83, 239 (2011).

    Article  CAS  Google Scholar 

  38. R. C. Nagarwal, R. Kumar, M. Dhanawat, and J. K. Pandit, Colloid Surf. B-Biointerfaces, 86, 28 (2011).

    Article  CAS  Google Scholar 

  39. H. Cao, X. Chen, J. Yao, and Z. Shao, J. Mater. Sci., 48, 150 (2012).

    Article  Google Scholar 

  40. C. Wu, J. Chang, S. Ni, and J. Wang, J. Biomed. Mater. Res. Part A, 76, 73 (2006).

    Article  Google Scholar 

  41. C. Wu, J. Chang, W. Zhai, S. Ni, and J. Wang, J. Biomed. Mater. Res. Part B, 78, 47 (2006).

    Article  Google Scholar 

  42. L. Mao, L. Shen, J. Niu, J. Zhang, W. Ding, Y. Wu, R. Fan, and G. Yuan, Nanoscale, 5, 9517 (2013).

    Article  CAS  Google Scholar 

  43. D. Kai, M. P. Prabhakaran, G. Jin, and S. Ramakrishna, J. Biomed. Mater. Res. Part A, 99, 376 (2011).

    Article  Google Scholar 

  44. H. Liu, S. Wang, and N. Qi, J. Appl. Polym. Sci., 125, E468 (2012).

    Article  CAS  Google Scholar 

  45. B.-W. Chang, C.-H. Chen, S.-J. Ding, D. C.-H. Chen, and H.-C. Chang, Sens. Actuators B-Chem., 105, 159 (2005).

    Article  CAS  Google Scholar 

  46. J. Pelipenko, P. Kocbek, B. Govedarica, R. Rošic, S. Baumgartner, and J. Kristl, Eur. J. Pharm. Biopharm., 84, 401 (2012).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiangrong Cheng.

Additional information

Co-first author with the same contribution to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rong, Z., Zeng, W., Kuang, Y. et al. Enhanced bioactivity of osteoblast-like cells on poly(lactic acid)/poly(methyl methacrylate)/nano-hydroxyapatite scaffolds for bone tissue engineering. Fibers Polym 16, 245–253 (2015). https://doi.org/10.1007/s12221-015-0245-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-015-0245-0

Keywords

Navigation