Skip to main content
Log in

Capability and limitation in evaluation on perceived fabric softness by three types of sensory modality

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

With an increasing online transaction of textile products and the current inaccessibility of their tactile properties to consumers, it is necessary to know the feasible manners in which the fabric softness sensation was perceived. Therefore, this study examined the accessibility of the tactile softness of fabrics by three different modalities, i.e. touch only, vision only (viewing video with fabric fluttering in a wind) and touch-vision bimodality. To compare the perceived softness sensation by three sensory modalities, two blocks of psychophysical experiment procedures were designed. The rating values were used to analyze the consistency of perceived softness magnitude among three sensory modalities, and to explore the physical determinants corresponding to each of three modalities. Meanwhile, both the just noticeable difference (JND) and the Webber fraction were calculated and compared among three different modalities. The results showed that it was statistically consistent of the magnitude of perceived softness sensation among three sensory modalities. The main physical determinants of perceived softness sensation were similar among three sensory modalities, whereas their contribution proportion depended on the specific modality. Psychometrically, the detectability by vision only were lower than that by touch only or touch-vision bimodality, and the discriminability by two modalities with tactual information was superior to that by vision only. Generally, it was concluded that blocking the view of the panelists was not a requirement for estimation on perceived softness intensity of fabrics, while in discrimination task the method with visual information couldn’t replace that with tactual information.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. J. Lederman and R. L. Klatzky, Atten. Percept. Psychophys., 71, 1439 (2009).

    Article  CAS  Google Scholar 

  2. D. P. Bishop, Text. Prog., 26, 1 (1996).

    Article  Google Scholar 

  3. H. Binns, Br. J. Psychol., 27, 404 (1937).

    Google Scholar 

  4. S. L. Paek, Percept. Motor Skills, 60, 335 (1985).

    Article  CAS  Google Scholar 

  5. P. Dillon, W. Moody, R. Bartlett, R. Scully, R. Morgan, and C. James, Lect. Notes Comput. Sci., 2058, 205 (2001).

    Article  Google Scholar 

  6. J. Laughlin, Int. J. Cloth. Sci. Tech., 3, 28 (1991).

    Article  Google Scholar 

  7. S. Kobayashi and M. Tomizuka, Sen’i Gakkaishi, 46, 251 (1990).

    Article  Google Scholar 

  8. R. Yenket, I. E. Chambers, and B. M. Gatewood, J. Sens. Stud., 22, 336 (2007).

    Article  Google Scholar 

  9. M. Kuschel, M. Di Luca, M. Buss, and R. L. Klatzky, IEEE T. Haptics, 3, 234 (2010).

    Article  Google Scholar 

  10. M. Konyo, S. Tadokoro, M. Hira, and T. Takamori, “International Conference on Intelligent Robots and Systems”, pp.3060–3065, Lausanne, Switzerland, 2002.

    Google Scholar 

  11. R. L. Klatzky, S. J. Lederman, and C. Reed, J. Exp. Psychol. Human, 19, 726 (1993).

    Article  CAS  Google Scholar 

  12. S. Guest and C. Spence, Exp. Brain Res., 150, 201 (2003).

    Google Scholar 

  13. M. A. Heller, Percep. Psychophys., 45, 49 (1989).

    Article  CAS  Google Scholar 

  14. B. Jones and S. O’Neil, Atten. Percept. Psychophys., 37, 66 (1985).

    Article  CAS  Google Scholar 

  15. T. Cook, C. Wallraven, and H. H. Bullthoff, “Proceedings of the Ninth International Conference on Information Visualisation (IV’05)”, pp.33–40, IEEE Computer Society, Washington D. C., USA, 2005.

    Book  Google Scholar 

  16. K. Drewing, A. Ramisch, and F. Bayer, “WHC’ 09 Proceedings of the World Haptics 2009 — Third Joint EuroHaptics Conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems”, pp.640–645, Salt Lake City, UT, USA, 2009.

    Book  Google Scholar 

  17. M. A. Heller, Atten. Percept. Psychophys., 31, 339 (1982).

    Article  CAS  Google Scholar 

  18. T. A. Whitaker, C. Simoes-Franklin, and F. N. Newell, Lect. Notes Comput. Sci., 5024, 319 (2008).

    Article  Google Scholar 

  19. T. Whitaker, C. Simões-Franklin, and F. Newell, Brain Res., 1242, 59 (2008).

    Article  CAS  Google Scholar 

  20. S. Guest and C. Spence, Int. J. Psychophysiol., 50, 63 (2003).

    Article  Google Scholar 

  21. J. Hu, X. Ding, R. B. Wang, and C. C. Cai, Fiber. Polym., 10, 371 (2009).

    Article  Google Scholar 

  22. M. Korman, K. Teodorescu, A. Cohen, M. Reiner, and D. Gopher, Presence Teleoperators Virtual Environments, 21, 295 (2012).

    Article  Google Scholar 

  23. I. Fründ, N. Haenel, and F. Wichmann, J. Vision, 11, 1 (2011).

    Article  Google Scholar 

  24. N. Pan, K. C. Yen, S. T. Zhao, and S. R. Yang, Text. Res. J., 58, 531 (1988).

    Google Scholar 

  25. W. M. Bergmann-Tiest and A. M. L. Kappers, IEEE T. Haptics, 2, 189 (2009).

    Article  Google Scholar 

  26. G. Mazzuchetti, R. Demichelis, M. B. Songia, and F. Rombaldoni, Fibres Text. East. Eur., 4, 67 (2008).

    Google Scholar 

  27. J. Hu, Q. Zhao, R. Jiang, R. Wang, and X. Ding, Cog. Neurodynamics, 7, 441 (2013).

    Article  Google Scholar 

  28. M. O. Ernst and M. S. Banks, Nature, 415, 429 (2002).

    Article  CAS  Google Scholar 

  29. S. Gepshtein, J. Burge, M. O. Ernst, and M. S. Banks, J. Vision, 5, 1013 (2005).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xudong Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, X., Hu, J., Ding, X. et al. Capability and limitation in evaluation on perceived fabric softness by three types of sensory modality. Fibers Polym 15, 2651–2657 (2014). https://doi.org/10.1007/s12221-014-2651-0

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2651-0

Keywords

Navigation