Skip to main content
Log in

Development of green composites reinforced with ramie fabrics: Effect of aging on mechanical properties of coated and uncoated specimens

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Bio-polymers have already penetrated in a great number of industries such as packaging and automotive in which they typically target the eco-minded consumers. Following that lead, novel green composites were prepared by resin transfer molding (RTM) and tested. Mechanical properties of ramie/bio-polyester composites were investigated in different fiber loadings. The results indicate that the flexural strength can be increased up to 138 % while tensile strength improved up to 31 %. The Young’s and bending moduli have also been increased up to 26 and 79 % respectively by the presence of the fiber fabrics. Environmental degradation tests have been performed on a set of coated and uncoated specimens. It is envisaged that an appropriate coating on the composite surfaces can preserve the durability properties under the range of exposure conditions examined by this study.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. Wool and S. N. Khot, “Bio-based Resins and Natural Fibers”, pp.184–193, ASM International, 2000.

    Google Scholar 

  2. R. Zah, R. Hischier, A. Leao, and I. Braun, J. Cleaner Prod., 15, 1032 (2007).

    Article  Google Scholar 

  3. S. Joshi, L. Drzal, A. Mohanty, and S. Arora, Compos. Part A-Appl. S., 35, 371 (2004).

    Article  Google Scholar 

  4. A. Bismarck, S. Mishra, and T. Lampke in “Natural Fibers, Biopolymers, and Biocomposites” (A. K. Mohanty, M. Misra, and T. L. Drzal Eds.), CRC Press-Taylor & Francis Group, Boca Raton, 2005.

  5. J. Markarian, Plastics, Additives and Compounding, 9, 20 (2007).

    Google Scholar 

  6. S. Aziz and P. M. Ansell, Compos. Sci. Technol., 64, 1219 (2004).

    Article  CAS  Google Scholar 

  7. C. Alves, Ph.D. Dissertation, IST, Lisbon, 2010.

  8. A. K. Bledzki, A. A. Mamun, A. Jaszkiewicz, and K. Erdmann, Compos. Sci. Technol., 70, 854 (2010).

    Article  CAS  Google Scholar 

  9. N. Graupner and J. Müssig, Compos. Part A-Appl. S., 42, 2010 (2011).

    Article  Google Scholar 

  10. R. Hu and J.-K. Lim, J. Compos. Mater., 41, 1655 (2007).

    Article  CAS  Google Scholar 

  11. E. Bodros, I. Pillin, N. Montrelay, and C. Baley, Compos. Sci. Technol., 67, 462 (2007).

    Article  CAS  Google Scholar 

  12. Anonymous, Bioplastics Mag., 2, 14 (2007).

    Google Scholar 

  13. Daimler Chrysler Uses a Natural-fiber Component in the Exterior of the Mercedes-Benz A-Class, Stuttgart, 2005. Availiable from: http://media.daimler.com/dcmedia/0-921-657582-1-815396-1-0-0-0-0-1-11701-854934-0-1-0-0-0- 0-0.html.

  14. P. Malnati, Compos. Technol., 15, 46 (2009).

    Google Scholar 

  15. H. J. Li and M. M. Sain, Polym.-Plast. Technol. Eng., 42, 853 (2003).

    Article  CAS  Google Scholar 

  16. A. K. Bledzki, A. A. Mamun, and O. Faruk, eXPRESS Polym. Lett., 1, 755 (2007).

    Article  CAS  Google Scholar 

  17. A. Arbelaiz, B. Fernández, G. Cantero, R. Llano-Ponte, A. Valea, and I. Mondragon, Compos. Part A-Appl S., 36, 1637 (2005).

    Article  Google Scholar 

  18. M. Zampaloni, F. Pourboghrat, S. Yankovich, B. Rodgers, J. Moore, L. Drzal, A. Mohanty, and M. Misra, Compos. Part A-Appl S., 38, 1569 (2007).

    Article  Google Scholar 

  19. C. Alves, P. M. C. Ferrão, A. J. Silva, L. G. Reis, F. M, L. B. Rodrigues, and D. E. Alves, J. Cleaner Prod., 18, 313 (2011).

    Article  Google Scholar 

  20. L. Yu, S. Petinakis, K. Dean, A. Bilyk, and D. Wu, Macromolecular Symposia, 249–250, 535 (2007).

    Article  Google Scholar 

  21. G. I. Williams and R. P. Wool, Appl. Compos. Mater., 7, 421 (2000).

    Article  CAS  Google Scholar 

  22. F. Vilaseca, J. Mendez, A. Pelach, M. Llop, N. Canigueral, J. Girones, X. Turon, and P. Mutje, Process Biochem., 42, 329 (2007).

    Article  CAS  Google Scholar 

  23. Mitsubishi Motors Develops Plant-based Green Plastic Floor Mat, Tokyo, (2006). Availiable from: http://www. mitsubishi-motors.com/en/corporate/pressrelease/corporate/detail1475.html.

  24. J. Müssig, M. Schmehl, H. B. von Buttlar, U. Schönfeld, and K. Arndt, Ind. Crops Prod., 24, 132 (2006).

    Article  Google Scholar 

  25. Y. Chen, L. F. Sun, O. Chiparus, I. Negulescu, V. Yachmenev, and M. Warnock, J. Polym. Environ., 13, 107 (2005).

    Article  CAS  Google Scholar 

  26. K. Oksman, M. Skrifvars, and J. F. Selin, Compos. Sci. Technol., 63, 1317 (2003).

    Article  CAS  Google Scholar 

  27. R. A. Shanks, A. Hodzic, and D. Ridderhof, J. Appl. Polym. Sci., 99, 2305 (2006).

    Article  CAS  Google Scholar 

  28. T. Yu, J. Ren, S. Li, H. Yuan, and Y. Li, Compos. Part AAppl. S., 41, 499 (2010).

    Article  Google Scholar 

  29. T. Yu, Y. Li, and J. Ren, Transactions of Nonferrous Metals Society of China, 19, 651 (2009).

    Article  Google Scholar 

  30. Why the BIOPOLI Resins are Sustainable? Sao Paulo, 2011. Availiable from: http://www.elekeiroz.com.br/Resinas/sustentaveis.html.

  31. E. Marsyahyo, Jamasri, H. S. B. Rochardjo, and Soekrisno, J. Ind. Text., 39, 13 (2009).

    Article  CAS  Google Scholar 

  32. L. G. Angelini, A. Lazzeri, G. Levita, D. Fontanelli, and C. Bozzi, Ind. Crops Prod., 11, 145 (2000).

    Article  Google Scholar 

  33. K. Goda, M. S. Sreekala, A. Gomes, T. Kaji, and J. Ohgi, Compos. Part A-Appl. S., 37, 2213 (2006).

    Article  Google Scholar 

  34. Z. T. Liu, Y. N. Yang, L. L. Zhang, Z. W. Liu, and H. P. Xiong, Cellulose, 14, 337 (2007).

    Article  CAS  Google Scholar 

  35. A. S. Herrmann, J. Nickel, and U. Riedel, Polym. Degrad. Stab., 59, 251 (1998).

    Article  CAS  Google Scholar 

  36. A. K. Mohanty, M. Misra, T. L. Drzal, S. E. Selke, B. R. Harte, and G. Hinrichsen in “Natural Fibers, Biopolymers, and Biocomposites”, 1st ed. (A. K. Mohanty, M. Misra, and T. L. Drzal Eds.), pp.1–36, CRC Press, Taylor & Francis Group, Boca Raton, 2005.

  37. “ASTM Standard Test Methods for Tensile Properties of Polymer Matrix Composite Materials”, ASTM International, West Conshohocken, PA, 2002.

  38. “ASTM Standard Test Methods for Flexural Properties of Unreinforced and Reinforced Plastics and Electrical Insulating Materials”, ASTM International, West Conshohocken, PA, 2003.

  39. A. C. de Albuquerque, K. Joseph, L. Hecker de Carvalho, and J. R. M. d’Almeida, Compos. Sci. Technol., 60, 833 (2000).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to G. Koronis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koronis, G., Silva, A. & Soares Dias, A.P. Development of green composites reinforced with ramie fabrics: Effect of aging on mechanical properties of coated and uncoated specimens. Fibers Polym 15, 2618–2624 (2014). https://doi.org/10.1007/s12221-014-2618-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2618-1

Keywords

Navigation