Skip to main content
Log in

Preparation of hollow fiber composite membrane for carbon dioxide/methane separation via orthogonal experimental design

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Coating active layer on a porous support membrane was an effective method to prepare composite membranes with both high permeability and selectivity for gas separation. However, most of the investigations are focused on the choice and optimization of novel active materials. In this paper, an orthogonal experimental method was used to optimize the structure of the polysulfone (PSF) support membrane. Polyvinylamine (PVAm) and polyvinyl alcohol (PVA) were blended and used as the active materials of hollow fiber composite membranes for the separation of CO2/CH4. The preparation parameters including additives content (A), polymer content (B), weight-average molecular weight of additives (C) and solvent concentration in bore fluid (D) were investigated. The results of statistical analysis indicated that the effects of these preparation parameters on the permeance and selectivity of CO2/CH4 both gradually weakened in the order of B, A, C and D. FESEM observation showed that PSF support membrane with the typical double finger-like pore structure could get a high separation factor and high CO2 permeance, rather than a single finger-like pore structure on the outer skin. The optimization of preparation parameters was as follows: PSF:PEG-400:DMAC (wt%)=19:5:76 and 10 wt% DMAC in bore fluid. Under the optimal preparation conditions, the resultant composite membrane exhibited a more excellent permselectivity of CO2/CH4 than commercial Prism membrane under low pressure (≤0.4 MPa).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. T. S. Chung, J. J. Shieh, W. Lau, M. P. Srinivasan, and D. R. Paul, J. Membr. Sci., 152, 211 (1999).

    Article  CAS  Google Scholar 

  2. R. W. Baker, Ind. Eng. Chem. Res., 41, 1393 (2002).

    Article  CAS  Google Scholar 

  3. E. B. Rinker, S. S. Ashour, and O. C. Sandall, Ind. Eng. Chem. Res., 39, 4346 (2000).

    Article  CAS  Google Scholar 

  4. J. Zhao, Z. Wang, J. X. Wang, and S. C. Wang, J. Membr. Sci., 403–404, 203 (2012).

    Article  Google Scholar 

  5. P. F. Ji, Y. M. Cao, X. M. Jie, and Q. Yuan, J. Nat. Gas. Chem., 19, 560 (2010).

    Article  CAS  Google Scholar 

  6. J. J. Shieh, T. S. Chung, and D. R. Paul, Chem. Eng. Sci., 54, 675 (1999).

    Article  CAS  Google Scholar 

  7. H. Z. Chen, Z. W. Thong, P. Li, and T. S. Chung, Int. J. Hydrogen. Energ., 39, 5043 (2014).

    Article  CAS  Google Scholar 

  8. S. Kanehashi, M. Kishida, T. Kidesaki, R. Shindo, S. Sato, T. Miyakoshi, and K. Nagai, J. Membr. Sci., 430, 211 (2013).

    Article  CAS  Google Scholar 

  9. I. Taniguchi, S. Duan, S. Kazama, and Y. Fujioka, J. Membr. Sci., 322, 277 (2008).

    Article  CAS  Google Scholar 

  10. S. H. Duan, I. Taniguchi, T. Kai, and S. Kazama, J. Membr. Sci., 423–424, 107 (2012).

    Article  Google Scholar 

  11. T. Kai, T. Kouketsu, S. H. Duan, S. Kazama, and K. Yamada, Sep. Purif. Technol., 63, 524 (2008).

    Article  CAS  Google Scholar 

  12. R. H. Du, A. Chakma, and X. S. Feng, J. Membr. Sci., 290, 19 (2007).

    Article  CAS  Google Scholar 

  13. J. N. Shen, L. G. Wu, L. Zhang, Y. Q. Dong, H. L. Chen, and C. J. Gao, Desalination, 193, 327 (2006).

    Article  CAS  Google Scholar 

  14. H. Ahn, J. Kim, and J. H. Kim, Int. J. Greenh. Gas. Con., 18, 165 (2013).

    Article  CAS  Google Scholar 

  15. R. Xing and W. S. Winston, J. Membr. Sci., 367, 91 (2011).

    Article  CAS  Google Scholar 

  16. Y. N. Zhao, B. T. Jung, L. Ansaloni, and W. S. Winston, J. Membr. Sci., 459, 233 (2014).

    Article  CAS  Google Scholar 

  17. S. R. Reijerkerk, M. H. Knoef, K. Nijmeijer, and M. Wessling, J. Membr. Sci., 352, 126 (2010).

    Article  CAS  Google Scholar 

  18. P. Li, H. Z. Chen, and T. S. Chung, J. Membr. Sci., 434, 18 (2013).

    Article  CAS  Google Scholar 

  19. T. K. Carlisle, G. D. Nicodemus, D. L. Gin, and R. D. Noble, J. Membr. Sci., 397–398, 24 (2012).

    Article  Google Scholar 

  20. S. Yoo, J. Won, S. W. Kang, Y. S. Kang, and S. Nagase, J. Membr. Sci., 363, 72 (2010).

    Article  CAS  Google Scholar 

  21. L. C. Tomé, D. Mecerreyes, C. R. Freire, L. P. Rebelo, I. M. Marrucho, J. Membr. Sci., 428, 260 (2013).

    Article  Google Scholar 

  22. M. W. Uddin and M. BrittHägg, J. Membr. Sci., 423–424, 150 (2012).

    Article  Google Scholar 

  23. C. H. Yi, Z. Wang, M. Li, J. X. Wang, and S. C. Wang, Desalination, 193, 90 (2006).

    Article  CAS  Google Scholar 

  24. L. Deng and M. B. Hägg, J. Membr. Sci., 363, 295 (2010).

    Article  CAS  Google Scholar 

  25. F. Yuan, Z. Wang, S. C. Li, J. X. Wang, and S. C. Wang, J. Membr. Sci., 421–422, 327 (2012).

    Article  Google Scholar 

  26. W. G. Cui, X. H. Li, S. B. Zhou, and J. Weng, J. Appl. Polym. Sci., 103, 3105 (2007).

    Article  CAS  Google Scholar 

  27. M. Z. Pedram, M. Omidkhah, and A. E. Amooghin, J. Ind. Eng. Chem., 20, 74 (2014).

    Article  Google Scholar 

  28. X. W. Yu, Z. Wang, Z. H. Wei, S. J. Yuan, J. Zhao, J. X. Wang, and S. C. Wang, J. Membr. Sci., 362, 265 (2010).

    Article  CAS  Google Scholar 

  29. Z. Wang, M. Li, Y. Cai, J. X. Wang, and S. C. Wang, J. Membr. Sci., 290, 250 (2007).

    Article  CAS  Google Scholar 

  30. Y. Zhang, Z. Wang, and S. C. Wang, Desalination, 145, 385 (2002).

    Article  CAS  Google Scholar 

  31. M. W. Uddin and M. B. Hägg, J. Membr. Sci., 423–424, 143 (2012).

    Article  Google Scholar 

  32. L. Y. Deng and M. B. Hägg, Int. J. Greenh. Gas. Con., 26, 127 (2014).

    Article  CAS  Google Scholar 

  33. L. Deng and M. B. Hägg, Int. J. Greenh. Gas. Con., 4, 638 (2010).

    Article  CAS  Google Scholar 

  34. C. M. Dong, Z. Wang, C. H. Yi, and S. C. Wang, J. Appl. Polym. Sci., 101, 1885 (2006).

    Article  CAS  Google Scholar 

  35. T. J. Kim, B. A. Li, and M. B. Hägg, J. Polym. Sci. Pt. BPolym. Phys., 42, 4326 (2004).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Bin Li.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, H.B., Shi, W.Y., Li, J.C. et al. Preparation of hollow fiber composite membrane for carbon dioxide/methane separation via orthogonal experimental design. Fibers Polym 15, 2553–2563 (2014). https://doi.org/10.1007/s12221-014-2553-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2553-1

Keywords

Navigation