Skip to main content
Log in

Effect of alkyl-chain-modified lignin in the PLA matrix

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Lignin has enormous potential for use as a raw material in the polymer industry. However, lignin has not been utilized as a raw material despite its many advantages because of its brittleness and difficulty of processing. Chemical modification of lignin is an important area of lignin research. In this study, two types of alkyl-chain-based modification agents were used. In the case of the polymeric materials blend, polymers are blended well so that the polymer solubility parameter (SP) values are close to each other. This is similar to the well-mixed combination of water and alcohol. If the SP value is very different, phase separation occurs, as in the relationship between water and oil. The two alkyl chain derivatives block the hydroxyl groups of lignin and replace them with glycoside. Moreover, they can alter the SP value of the modified lignin to make it similar to that of a synthetic polymer to enable blending. Cellulose is compatible with hemicellulose, which is coupled to lignin by ether, glycoside, and ester bonds in plant fibers. To mimic this structure, in this study, lignin was combined with an alkyl chain with a similar SP value and was used as a matrix polymer to form glycoside bonds. This relationship between lignin and the alkyl chain is similar to that between the cellulose and lignin-carbohydrate-complex (LCC). PLA-modified lignin (PLAL) and tetrahydrofuran-modified lignin (THFL) exhibited remarkable changes in the presence of an alcohol functional group. The results of 1H-NMR analysis confirm those obtained by FT-IR analysis. The results of the DSC analyses indicate that lignin and modified lignin exhibit different thermal properties. The results of the thermal and mechanical analyses of the modified lignin/PLA blends demonstrate that the characteristics of the alkyl chains used to modify lignin were well reflected in the final blends. Alkyl-chain-modified lignin that mimics LCC was observed to enhance the compatibility between the matrix polymers used in this study and modified lignin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. L. McCarthy and A. Islam in “Lignin: Historical, Biological, and Materials Perspectives” (W. G. Glasser, R. A. Northey, and T. P. Schultz Eds.), ACS Symp. Ser. 742, pp.2–99, American Chemical Society, Washington, 2000.

    Google Scholar 

  2. S. Kubo, R. D. Gilbert, and J. F. Kadla in “Natural Fibers, Biopolymers, and Biocomposites” (A. K. Mohanty, M. Misra, and L. T. Drzal Eds.), p.674, Taylor and Francis, Boca Raton, 2005.

  3. D. Feldman, D. Banu, M. Lacasse, J. Wang, and C. Luchian, J. Macromol. Sci.-Pure Appl. Chem., A32, 1613 (1995).

    Article  CAS  Google Scholar 

  4. H. Yoshida, R. Morck, K. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 34, 1187 (1987).

    Article  CAS  Google Scholar 

  5. D. Feldman, C. Luchian, D. Banu, and M. Lacasse, Cell. Chem. Technol., 25, 163 (1991).

    CAS  Google Scholar 

  6. J. Nakano, Y. Izuta, T. Orita, H. Hatakeyama, K. Kobashigawa, K. Teruya, and S. Hirose, Sen-I Gakkaishi, 53, 416 (1997).

    Article  CAS  Google Scholar 

  7. H. Yoshida, R. Morck, K. Kringstad, and H. Hatakeyama, J. Appl. Polym. Sci., 40, 1819 (1990).

    Article  CAS  Google Scholar 

  8. Z. X. Guo, A. Gandini, and F. Pla, Polym. Int., 27, 17 (1992).

    Article  CAS  Google Scholar 

  9. Z. X. Guo and A. Gandini, Eur. Polym. J., 27, 1177 (1991).

    Article  CAS  Google Scholar 

  10. D. Fengel and M. Przyklenk, Wood Sci. Technol., 10, 312 (1976).

    Google Scholar 

  11. T. Koshijima, T. Watanabe, and F. Yaku in “Lignin: Properties and Materials” (W. G. Glasser and S. Sarakanen Eds.), pp.15–26, ACS Symp. Ser. 397, Washington, 1989.

  12. H. H. Nimz, Tappi J., 56, 124 (1973).

    CAS  Google Scholar 

  13. J. Burke, “Solubility Parameters: Theory and Application”, Vol. 3, The Book and Paper Group Annual, The American Institute for Conservation, Oakland, USA, 1984.

    Google Scholar 

  14. T. Setoyama, M. Kobayashi, Y. Kabata, T. Kawai, and A. Nakanishi, Catalysis Today, 73, 2930 (2002).

    Article  Google Scholar 

  15. W. Thielemans and R. P. Wool, Biomacromolecules, 6, 1902 (2005).

    Article  Google Scholar 

  16. C. M. Hansen, “Hansen Solubility Parameters: A User’s Handbook”, 2nd ed., pp.282–283, CRC Press, Boca Raton, 2007.

    Book  Google Scholar 

  17. R. C. Sun, X. F. Sun, S. Q. Wang, W. Zhu, and X. Y. Wang, Ind. Crop. Prod., 15, 179 (2002).

    Article  CAS  Google Scholar 

  18. K. A. M. Thakur, R. T. Kean, E. S. Hall, J. J. Kolstad, and E. J. Munson, Int. J. Polym. Anal. Charact., 4, 393 (1998).

    Article  Google Scholar 

  19. C. A. Cateto, M. F. Barreiro, A. E. Rodrigues, and M. N. Belgacem, Ind. Eng. Chem. Res., 48, 2583 (2009).

    Article  CAS  Google Scholar 

  20. A. J. Nijenhuis, E. Colstee, D. W. Grijpma, and A. J. Pennings, Polymer, 37, 5849 (1996).

    Article  CAS  Google Scholar 

  21. P. M. Chou, M. Mariatti, A. Zulkifli, and M. Todo, Polym. Bull., 69, 455 (2012).

    Article  CAS  Google Scholar 

  22. C. M. Hansen, “Hansen Solubility Parameters: A User’s Handbook”, 2nd ed., pp.493–505, CRC Press, Boca Raton, USA, 2007.

    Book  Google Scholar 

  23. D. Braga, F. Grepioni, L. Maini, and M. Polito, Struct. Bond., 132, 27 (2009).

    Google Scholar 

  24. J. Baldrian, M. Horký, M. Steinhart, A. Sikora, M. Mihailova, H. Amenitsch, S. Bernstorff, and G. Todorova, Fibres Text. East. Eur., 11, 46 (2003).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jongshin Park.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kim, S., Oh, S., Lee, J. et al. Effect of alkyl-chain-modified lignin in the PLA matrix. Fibers Polym 15, 2458–2465 (2014). https://doi.org/10.1007/s12221-014-2458-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-2458-z

Keywords

Navigation