Skip to main content
Log in

Wicking properties of polyamide 66 twisted nanofiber yarn by tracing the color alteration in yarn structure

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In view of the interest in wicking properties of these flexible structures, analysis of the wicking phenomena in nylon 6.6 nanofiber yarns is carried out by considering the twist rate effects. A novel method is used based on adding a pH-sensitive dye to yarn interstructure and the analysis of color alteration of nanofiber yarn structure, resulting from a shift in pH, during the capillary rise of distilled water. The results show that the addition of pH- sensitive dye has no influence on the average nanofiber diameter and the wicking behavior of yarns. This study shows that in short durations, the kinetic of the capillary rise follows the Lucas-Washburn equation. The Lambertw, a mathematical function, has been incorporated, which helps measure an equivalent structural factor of nanofiber yarns and vertical wicking height at any given time considering the gravitational effects. The statistical results show that the average of equilibrium wicking height and capillary rise rate coefficient tend to decrease with increasing the nanofiber yarn twist, due to the reduction of continuity and size of capillaries.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. G. Kornev, X. Ren, and Y. Dzenis, J. Eng. Fiber Fabric., 4, 14 (2009).

    CAS  Google Scholar 

  2. C. C. Tsai, P. Mikes, T. Andrukh, E. White, D. Monaenkova, O. Burtovyy, R. Burtovyy, B. Rubin, D. Lukas, I. Luzinov, J. R. Owen, and K. G. Kornev, Nanoscale, 3, 4685 (2011).

    Article  CAS  Google Scholar 

  3. D. Monaenkova and K. G. Kornev, J. Colloid Interface Sci., 348, 240 (2010).

    Article  CAS  Google Scholar 

  4. D. D. Cunningham, Anal. Chim. Acta, 429, 1 (2001).

    Article  CAS  Google Scholar 

  5. V. Reukov, A. Vertegel, O. Burtovyy, K. G. Kornev, and I. Luzinov, Mater. Sci. Eng. C, 29, 669 (2009).

    Article  CAS  Google Scholar 

  6. L. V. Der Schueren, T. Mollet, Ö. Ceylan, and K. D. Clerck, Eur. Polym. J., 46, 2229 (2010).

    Article  Google Scholar 

  7. R. Chen, L. Qiu, Q. Ke, C. He, and X. Mo, J. Biomater Sci. Polym. Ed., 20, 1513 (2009).

    Article  CAS  Google Scholar 

  8. H. T. Zhang, H. Nie, S. Li, C. J. B. White, and L. Zhu, Mater. Lett., 63, 1199 (2009).

    Article  CAS  Google Scholar 

  9. J. M. F. Jabal, L. McGarry, A. Sobczyk, and D. E. Aston, Am. Chem. Soc. Appl. Mater. Interfaces, 1, 2325 (2009).

    Article  CAS  Google Scholar 

  10. Y. J. Lin, Q. Cai, Q. F. Li, L. W. Xue, R. G. Jin, and X. P. Yang, J. Appl. Polym. Sci., 115, 339 (2010).

    Google Scholar 

  11. F. L. Huang, Q. Q. Wang, Q. F. Wei, W. D. Gao, H. Y. Shou, and S. D. Jiang, eXPRESS Polym. Lett., 4, 551 (2010).

    Article  CAS  Google Scholar 

  12. B. D. Schoenmaker, L. V. Der Schueren, S. D. Vrieze, P. Westbroek, and K. D. Clerck, J. Appl. Polym. Sci., 120, 305 (2011).

    Article  Google Scholar 

  13. Z. Khatri, K. Wei, B. S. Kim, and I. S. Kim, Carbohyd. Polym., 87, 2183 (2012).

    Article  CAS  Google Scholar 

  14. K. H. Hong and T. J. Kang, J. Appl. Polym. Sci., 100, 167 (2006).

    Article  CAS  Google Scholar 

  15. G. Callegari, I. Tyomkin, K. G. Kornev, A. V. Neimark, and Y. L. Hsieh, J. Colloid Interface Sci., 353, 290 (2011).

    Article  CAS  Google Scholar 

  16. R. Lucas, Kolloid Z, 23, 15 (1918).

    Article  CAS  Google Scholar 

  17. E. W. Washburn, Phys. Rev., 17, 273 (1921).

    Article  Google Scholar 

  18. C. M. Huang, C. C. Wang, M. Kawai, S. Barnes, and C. A. Elmets, J. Chromatogr. A, 1109, 144 (2006).

    Article  CAS  Google Scholar 

  19. F. L. Zhou and R. H. Gong, Polym. Int., 57, 837 (2008).

    Article  CAS  Google Scholar 

  20. M. S. Musavi Jad, S. A. Hosseini Ravandi, H. Tavanai, and R. H. Sanatgar, Fiber. Polym., 12, 801 (2011).

    Article  CAS  Google Scholar 

  21. M. B. Bazbouz and G. K. Stylios, Eur. Polym. J., 44, 1 (2008).

    Article  CAS  Google Scholar 

  22. C. K. Liu, R. J. Sun, K. Lai, C. Q. Sun, and Y. W. Wang, Mater. Lett., 62, 4467 (2008).

    Article  CAS  Google Scholar 

  23. S. F. Fennessey and R. J. Farris, Polymer, 45, 4217 (2004).

    Article  CAS  Google Scholar 

  24. P. D. Dalton, D. Klee, and M. Moller, Polymer, 46, 611 (2005).

    Article  CAS  Google Scholar 

  25. A. F. Lotus, E. T. Bender, E. A. Evans, R. D. Ramsier, D. H. Reneker, and G. G. Chase, J. Appl. Phys., 103, 024910 (2008).

    Article  Google Scholar 

  26. F. Dabirian, Y. Hosseini, and S. A. Hosseini, J. Text. Inst., 98, 237 (2007).

    Article  CAS  Google Scholar 

  27. M. Yousefzadeh, M. Latifi, W. E. Teo, M. Amani Tehran, and S. Ramakrishna, Polym. Eng. Sci., 51, 323 (2011).

    Article  CAS  Google Scholar 

  28. A. M. Afifi, S. Nakano, H. Yamane, and Y. Kimura, Macromol. Mater. Eng., 295, 660 (2010).

    Article  CAS  Google Scholar 

  29. U. Ali, Y. Zhou, X. Wang, and T. Lin, J. Text. Inst., 103, 80 (2012).

    Article  CAS  Google Scholar 

  30. F. Dabirian, S. A. Hosseini Ravandi, R. Hashemi Sanatgar, and J. P. Hinestroza, Fiber. Polym., 12, 610 (2011).

    Article  CAS  Google Scholar 

  31. F. Hajiani, Ali A. A. Jeddi, and A. A. Gharehaghaji, Fiber. Polym., 13, 244 (2012).

    Article  CAS  Google Scholar 

  32. A. W. Adamson and A. P. Gast, “Physical Chemistry of Surfaces”, Chapter 2, pp.4–43, Wiley, New York, 1997.

    Google Scholar 

  33. N. Ansari and M. Haghighat Kish, J. Text. Inst., 91, 410 (2000).

    Article  Google Scholar 

  34. B. J. Carroll, J. Colloid Interface Sci., 57, 488 (1976).

    Article  CAS  Google Scholar 

  35. X. M. Chen, K. G. Kornev, Y. K. Kamath, and A. V. Neimark, Text. Res. J., 71, 862 (2001).

    Article  CAS  Google Scholar 

  36. D. Fantini and L. Costa, Polym. Adv. Technol., 20, 111 (2009).

    Article  CAS  Google Scholar 

  37. C. Drew, J. Macromol. Sci. A, 49, 1085 (2002).

    Article  Google Scholar 

  38. N. Wang, A. Zha, and J. Wang, Fiber. Polym., 9, 97 (2008).

    Article  Google Scholar 

  39. A. E. Scheidegger, “Physics of Flow Through Porous Media”, University of Toronto Press, Toronto, Canada, 1974.

    Google Scholar 

  40. N. R. S. Hollies, M. M. Kaessinger, B. S. Watson, and H. Bogaty, Text Res. J., 11, 8 (1957).

    Article  Google Scholar 

  41. E. P. Popov, “Mechanics of Materials”, Prentice-Hall, New York, 1952.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Ghareaghaji.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hajiani, F., Ghareaghaji, A.A., Jeddi, A.A.A. et al. Wicking properties of polyamide 66 twisted nanofiber yarn by tracing the color alteration in yarn structure. Fibers Polym 15, 1966–1976 (2014). https://doi.org/10.1007/s12221-014-1966-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1966-1

Keywords

Navigation