Skip to main content
Log in

Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The clam shell (CS) waste was first modified by furfural and hydrochloric acid to prepare fillers FCS and ACS, which were then used as fillers in polypropylene (PP), as well as the commercial calcium carbonate (CC). These fillers were characterized and analyzed by means of X-ray diffraction (XRD), atomic force microscopy (AFM), particle size analyzer, Fourier transformed infrared spectroscopy (FTIR) and contact angle measurement. The mechanical and thermal properties of PP composites were investigated as well. XRD analysis indicated that the major crystalline phase of CC was calcite; of shell waste derived fillers, calcite and aragonite. The CC was fully hydrophobic, while the shell derived fillers were amphiphilic. Mechanical property studies showed that the incorporation of FCS played the role mainly of toughening the PP; of CC, CS and ACS, that of reinforcing. The optimum filler contents of CS, ACS and FCS could reach 5, 7 and 15 wt.%, respectively, to obtain a good balance between fracture toughness and stiffness of the PP composites. Polarized optical microscopy (POM) observation indicated that the inclusion of these fillers could promote the heterogeneous nucleation of PP.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. S. Rimdusit, W. Smittakorn, S. Jittarom, and S. Tiptipakorn, Eng. J., 15, 17 (2011).

    Article  Google Scholar 

  2. M. Sadeghi and A. Esfandiari, Mater. Sci. Technol., 46, 695 (2012).

    CAS  Google Scholar 

  3. Z. Zhang, C. Wang, Y. Meng, and K. Mai, Compos. Part A-Appl. S., 43, 189 (2012).

    Article  CAS  Google Scholar 

  4. W. C. J. Zuiderduin, C. Westzaan, J. Huétink, and R. J. Gaymans, Polymer, 44, 261 (2003).

    Article  CAS  Google Scholar 

  5. P. Eteläaho, S. Haveri, and P. Järvelä, Polym. Compos., 32, 464 (2011).

    Article  CAS  Google Scholar 

  6. B. Rotzinger, Polym. Degrad. Stabil., 91, 2884 (2006).

    Article  CAS  Google Scholar 

  7. M. Rahail Parvaiz, P. A. Mahanwar, S. Mohanty, and S. K. Nayak, J. Miner. Mater. Charact. Eng., 9, 985 (2010).

    Google Scholar 

  8. A. Ariffin, A. S. Mansor, S. S. Jikan, and Z. A. Mohd. Ishak, J. Appl. Polym. Sci., 108, 3901 (2008).

    Article  CAS  Google Scholar 

  9. V. Mittal, J. Thermoplast. Compos., 20, 575 (2007).

    Article  CAS  Google Scholar 

  10. A. Esfandiari, H. Nazokdast, A. S. Rashidi, and M. E. Yazdanshenas, J. Appl. Sci., 8, 545 (2008).

    Article  CAS  Google Scholar 

  11. A. Esfandiari, Fiber. Polym., 9, 48 (2008).

    Article  CAS  Google Scholar 

  12. A. Esfandiari, Worl. Appl. Sci. J., 3, 470 (2008).

    Google Scholar 

  13. M. Sadeghi and A. Esfandiari, Fiber. Polym., 14, 556 (2013).

    Article  CAS  Google Scholar 

  14. A. Zarafshan, S. Zarafshan, and A. H. Esfandiari, Mater. Plast., 48, 285 (2011).

    CAS  Google Scholar 

  15. Z. T. Yao, T. Chen, H. Y. Li, M. S. Xia, Y. Ye, and H. Zheng, J. Hazard. Mater., 262, 212 (2013).

    Article  CAS  PubMed  Google Scholar 

  16. M. Suzuki, S. Sakuda, and H. Nagasawa, Biosci. Biotechnol. Biochem., 71, 1735 (2007).

    Article  CAS  PubMed  Google Scholar 

  17. S. Sudo, T. Fujikawa, T. Nagakura, T. Ohkubo, K. Sakaguchi, M. Tanaka, K. Nakashima, and T. Takahashi, Nature, 387, 563 (1997).

    Article  CAS  PubMed  Google Scholar 

  18. M. H. Chong, B. C. Chun, Y. C. Chung, and B. G. Cho, J. Appl. Polym. Sci., 99, 1583 (2006).

    Article  CAS  Google Scholar 

  19. Z. D. Lin, Z. X. Guan, C. Chen, and B. F. Xu, Thermochim. Acta, 551, 149 (2013).

    Article  CAS  Google Scholar 

  20. H. Y. Li, Y. Q. Tan, L. Zhang, Y. X. Zhang, Y. H. Song, Y. Ye, and M. S. Xia, J. Hazard. Mater., 217–218, 256 (2012).

    Article  CAS  PubMed  Google Scholar 

  21. C. M. Chan, J. Wu, J. X. Li, and Y. K. Cheung, Polymer, 43, 2981 (2002).

    Article  CAS  Google Scholar 

  22. S. C. Tjong, “Polymer Composites with Carbonaceous Nanofillers: Properties and Applications”, John Wiley & Sons Weinheim, 2012.

    Book  Google Scholar 

  23. D. Yu and B. Debes, Mat. Sci. Eng. A-Struct., 527, 1617 (2010).

    Article  CAS  Google Scholar 

  24. H. Z. Yan and Y. Chen, Iran. Polym. J., 19, 791 (2010).

    CAS  Google Scholar 

  25. S. Gopi and V. K. Subramanian, Ind. J. Chem., 52, 342 (2013).

    Google Scholar 

  26. B. Chen, J. H. Fan, J. Wang, X. Peng, and X. L. Wu, J. Metastable Nanocryst. Mater., 23, 83 (2005).

    Article  CAS  Google Scholar 

  27. S. D. Cifrulak, Am. Mineral., 55, 815 (1970).

    CAS  Google Scholar 

  28. S. W. Lee, Y. N. Jang, and J. C. Kim, Evid-Based Compl. Alt., 2011, 1 (2011).

    Google Scholar 

  29. C. Linga Raju, K. V. Narasimhulu, N. O. Gopal, J. L. Rao, and B. C. V. Reddy, J. Mol. Struct., 608, 201 (2002).

    Article  Google Scholar 

  30. L. N. Zhao, J. D. Feng, and Z. C. Wang, Sci. China Ser B., 52, 924 (2009).

    Article  CAS  Google Scholar 

  31. S. B. Jeong, Y. C. Yang, Y. B. Chae, and B. G. Kim, Mater. Trans., 50, 409 (2009).

    Article  CAS  Google Scholar 

  32. L. C. Li and Y. Zhang, Adv. Mater. Res., 79–82, 1967 (2009).

    Article  CAS  Google Scholar 

  33. H. Y. Li, T. Chen, H. Y. Zhang, Z. T. Yao, L. Zhang, L. Pan, Y. Ye, and M. S. Xia, J. Chinese Ceram. Soc., 40, 1671 (2012).

    CAS  Google Scholar 

  34. H. Y. Li, H. Y. Zhang, L. Pan, T. Chen, L. Zhang, Y. Ye, and M. S. Xia, J. Funct. Mater., 43, 1519 (2012).

    Google Scholar 

  35. H. Murase and T. Fujibayashi, Prog. Org. Coatings, 31, 97 (1997).

    Article  CAS  Google Scholar 

  36. Y. I. Yun, K. S. Kim, S. J. Uhm, B. B. Khantua, K. Cho, J. K. Kim, and C. E. Park, J. Adhesion Sci. Tech., 18, 1279 (2004).

    Article  CAS  Google Scholar 

  37. N. Ayrilmis and A. Kaymakci, Ind. Crop. Prod., 43, 457 (2013).

    Article  CAS  Google Scholar 

  38. A. K. Bledzki, A. A. Mamun, M. Lucka-Gabor, and V. S. Gutowski, Express Polym. Lett., 2, 413 (2008).

    Article  CAS  Google Scholar 

  39. A. K. Bledzki and J. Gassan, Prog. Polym. Sci., 24, 221 (1999).

    Article  CAS  Google Scholar 

  40. N. Ayrilmis, S. Jarusombuti, V. Fuengvivat, P. Bauchongkol, and R. H. White, Fiber. Polym., 12, 919 (2011).

    Article  CAS  Google Scholar 

  41. N. Ayrilmis, A. Kaymakci, T. Akbulut, and G. M. Elmas, Compos. Part B-Eng., 47, 150 (2013).

    Article  CAS  Google Scholar 

  42. Y. W. Leong, M. B. Abu Bakar, Z. A. Mohd Ishak, and A. Ariffin, Polym. Degrad. Stabil., 83, 411 (2004).

    Article  CAS  Google Scholar 

  43. G. Wang, X. Y. Chen, R. Huang, and L. Zhang, J. Mater. Sci. Lett., 21, 985 (2002).

    Article  CAS  Google Scholar 

  44. J. I. Weon, K. T. Gam, W. J. Boo, H. J. Sue, and C. M. Chan, J. Appl. Polym. Sci., 99, 3070 (2006).

    Article  CAS  Google Scholar 

  45. Q. X. Zhang, Z. Z. Yu, X. L. Xie, and Y. W. Mai, Polymer, 45, 5985 (2004).

    Article  CAS  Google Scholar 

  46. T. Guo, L. S. Wang, A. Q. Zhang, and T. M. Cai, J. Appl. Polym. Sci., 97, 1154 (2005).

    Article  CAS  Google Scholar 

  47. E. Piorkowska and G. C. Rutledge, “Handbook of Polymer Crystallization”, John Wiley & Sons Weinheim, 2013.

    Book  Google Scholar 

  48. J. S. Ma, S. M. Zhang, Z. N. Qi, G. Li, and Y. L. Hu, J. Appl. Polym. Sci., 83, 1978 (2002).

    Article  CAS  Google Scholar 

  49. S. Y. Lee, I. A. Kang, G. H. Doh, W. J. Kim, J. S. Kim, H. G. Yoon, and Q. H. Wu, Express Polym. Lett., 2, 78 (2008).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhitong Yao or Meisheng Xia.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Z., Xia, M., Ge, L. et al. Mechanical and thermal properties of polypropylene (PP) composites filled with CaCO3 and shell waste derived bio-fillers. Fibers Polym 15, 1278–1287 (2014). https://doi.org/10.1007/s12221-014-1278-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-1278-5

Keywords

Navigation