Skip to main content
Log in

Fabrication and characterization of PET nanofiber hollow yarn

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, various concentrations of polyethylene terephthalate (PET) polymeric solution were investigated to produce hollow nanofiber yarn. First, the electrospining apparatus was designed in a way that to put PVA multifilament in the core and to twist PET nanofibers onto multifilament yarn as a sheath simultaneously, followed by dissolving PVA yarn in hot water, PET hollow nanofiber yarn was produced. In this survey, it has been observed that the average thickness of sheath increased by increasing concentrations of PET polymeric solution. Results showed that maximum efficiency of extracting the PVA multifilament from the hollow yarn under certain conditions (concentration of 18 % (w/v) of PET, applied voltage of 10 kV, and flow rate of 0.0526 ml/h) was more than 85 %. The mechanical and physical properties of PET hollow yarns were investigated and indicated that the hollow nanofiber yarns at concentration of 30 % and 18 % polymeric solution had the lowest strength and the highest regain moisture, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Refrerences

  1. D. Li and Y. N. Xia, J. Adv. Mater., 16, 1151 (2004).

    Article  CAS  Google Scholar 

  2. D. H. Reneker, A. L. Yarin, H. Fong, and S. Koombhongse, J. Appl. Phys., 87, 4531 (2000).

    Article  CAS  Google Scholar 

  3. Y. M. Shin, M. M. Hohman, M. P. Brenner, and G. C. Rutledge, J. Polymer, 42, 9955 (2001).

    Article  CAS  Google Scholar 

  4. H. L. Jiang, D. F. Fang, B. J. Hsiao, B. J. Chu, and W. L. Chen, J. Biomater. Sci. Polymer. 15, 279 (2004).

    Article  CAS  Google Scholar 

  5. X. H. Zong, K. Kim, D. F. Fang, S. F. Ran, B. S. Hsiao, and B. Chu, Polymer, 43, 4403 (2002).

    Article  CAS  Google Scholar 

  6. K. Sawicka, P. Gouma, and S. Simon, Sens Actuators B Chem., 108, 585 (2005).

    Article  CAS  Google Scholar 

  7. C. Shin and G. G. Chase, J. Dispers. Sci. Technol., 27, 517 (2006).

    Article  CAS  Google Scholar 

  8. C. Shin, G. G. Chase, and D. H. Reneker, J. Colloids Surf A Physicochem. Eng. Asp., 262, 211 (2005).

    Article  CAS  Google Scholar 

  9. X. F. Wang, X. M. Chen, K. Yoon, D. F. Fang, B. S. Hsiao, and B. Chu, J. Env. Sci. Tech., 39, 7684 (2005).

    Article  CAS  Google Scholar 

  10. A. Babel, D. Li, Y. N. Xia, and S. A. Jenekhe, Macromolecules, 38, 4705 (2005).

    Article  CAS  Google Scholar 

  11. Y.-R. Kim, J. Adv. Mater., 15, 2027 (2003).

    Article  Google Scholar 

  12. H. Q. Liu, C. H. Reccius, and H. G. Craighead, Appl. Phys. Lett., 87, 253106 (2005).

    Article  Google Scholar 

  13. X. W. Lou, L. A. Archer, and Z. Yang, J. Adv. Mater., 20, 3987 (2008).

    Article  CAS  Google Scholar 

  14. S. E. Skarabalak, J. Chen, Y. Sun, X. Lu, L. Au, C. M. Cobley, and Y. Xia, Acc. Chem. Res., 41, 1587 (2008).

    Article  Google Scholar 

  15. J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z. Y. Li, L. Au, H. Zhang, M. B. Kimmey, X. Li, and Y. Xia, Nano Lett., 5, 473 (2005).

    Article  CAS  Google Scholar 

  16. M. Bognitzki H. Q. Hou, M. Ishaque, T. Frese, M. Hellwig, C. Schwarte, A. Schaper, J. H. Wendorff, and A. Greiner, J. Adv. Mater., 12, 637 (2000).

    Article  CAS  Google Scholar 

  17. M. X. Wan, Z. X. Wei, Z. M. Zhang, L. J. Zhang, K. Huang, and Y. S. Yang, Synth. Metals, 135, 175 (2003).

    Article  Google Scholar 

  18. I. G. Loscertales, A. Barrero, M. Marquez, R. Spretz, R. Velarde-Ortiz, and G. Larsen, J. Am. Chem. Soc., 126, 5376 (2004).

    Article  CAS  Google Scholar 

  19. T. Song, Y. Z. Zhang, T. J. Zhou, C. T. Lim, S. Ramakrishna, and B. Liu, Chem. Phys. Lett., 415, 317 (2005).

    Article  CAS  Google Scholar 

  20. J. T. McCann, D. Li, and Y. N. Xia, J. Mater. Chem., 15, 735 (2005).

    Article  CAS  Google Scholar 

  21. Z. C. Sun, E. Zussman, A. L. Yarin, J. H. Wendroff, and A. Greiner, J. Adv. Mater., 15, 1929 (2003).

    Article  CAS  Google Scholar 

  22. D. Li, A. Babel, S. A. Jenekhe, and Y. N. Xia, J. Adv. Mater., 16, 2062 (2004).

    Article  CAS  Google Scholar 

  23. I. G. Loscertales, A. Barrero, I. Guerrero, R. Cortijo, M. Marquez, and A. M. Ganan-Calvo, J. Science, 295, 1695 (2002).

    Article  CAS  Google Scholar 

  24. S. Bhargava, Ph. D. Dissertation, The Graduate Faculty of the University of Akron, Ohio, 2007.

    Google Scholar 

  25. S. H. Wu and X. H. Qin, J. Mater. Lett., 106, 204 (2013).

    Article  CAS  Google Scholar 

  26. B. Veleirinho, M. F. Rei, and J. A. Lopes-Da-Silvia, J. Polym. Sci. Pol. Phys., 46, 460 (2008).

    Article  CAS  Google Scholar 

  27. P. Chegoonian, M. Feiz, S. A. Hosseini. Ravandi, and S. Mallakpour, J. Appl. Polym. Sci., 124, 190 (2012).

    Article  Google Scholar 

  28. A. M. Kenwright, S. K. Peace, R. W. Richards, A. Bunn, and W. A. MacDonald, J. Polymer, 40, 2035 (1999).

    Article  CAS  Google Scholar 

  29. A. Merati and M. Okamura, Text. Res. J., 70, 1070 (2000).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Hosseini Ravandi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Javazmi, L., Ravandi, S.A.H. & Ghareaghaji, A.A. Fabrication and characterization of PET nanofiber hollow yarn. Fibers Polym 15, 954–960 (2014). https://doi.org/10.1007/s12221-014-0954-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0954-9

Keywords

Navigation