Skip to main content
Log in

Effects of nanoclay and short nylon fiber on morphology and mechanical properties of nanocomposites based on NR/SBR

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Natural rubber and styrene butadiene rubber (NR/SBR) reinforced with both short nylon fibers and nanoclay (Cloisite 15A) nanocomposites were prepared in an internal and a two roll-mill mixer by a three-step mixing process. The effects of fiber loading and different loading of nanoclay (1, 3 and 5 wt. %) were studied on the microstructure and mechanical properties of the nanocomposites. The adhesion between the fiber and the matrix was improved by the addition of a dry bonding system consisting of resorcinol, hexamethylene tetramine and hydrated silica (HRH). This silicate clay layers was used in place of hydrated silica in a HRH bonding system for SBR/NR-short nylon fiber composite. Nanoclay was also used as a reinforcing filler in the matrix-short fiber hybrid composite. The cure and scorch times of the composites decreased while cure rate increased when the short fiber and nanoclay were added. The mechanical properties of the composites showed improvement in both longitudinal and transverse directions with increasing short fiber and nanoclay content. The structure of the nanocomposites was characterized with X-ray diffraction (XRD), scanning electron microscopy (SEM). X-ray diffraction results of nanocomposites indicated that the interlayer distance of silicate layers increased. The mechanical properties of nanocomposites (tensile, hardness and tear strength) are examined and the outcome of these results is discussed in this paper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. R. S. Rajeev, A. K. Bhowmick, S. K. De, and S. Bandyopadhyay, J. Appl. Polym. Sci., 90, 544 (2003).

    Article  CAS  Google Scholar 

  2. A. K. Bhowmick and R. S. Rajeev, “Current Topics in Elastomers Research”, CRC, Ch 12, 2008.

    Book  Google Scholar 

  3. T. D. Sreeja and S. K. N. Kutty, Elastomers Plast., 33, 225 (2001).

    Article  CAS  Google Scholar 

  4. S. R. Ryu and D. J. Lee, Int. J. Polym. Mater., 52, 415 (2003).

    Article  CAS  Google Scholar 

  5. D. De and A. Basudam, J. Appl. Polym. Sci., 101, 3151 (2006).

    Article  CAS  Google Scholar 

  6. Y. Yu, C. Lu, X. Su, and X. Wang, J. Mater. Sci., 42, 6347 (2007).

    Article  Google Scholar 

  7. M. Abdelmouleh, S. Boufi, M. N. Belgacem, and A. Dufreshe, Compos. Sci. Technol., 67, 1627 (2007).

    Article  CAS  Google Scholar 

  8. A. Seema and S. K. N. Kutty, Polym. Plast. Technol. Eng., 44, 1139 (2005).

    Article  CAS  Google Scholar 

  9. A. A. Wazzan, J. Polym. Mater., 53, 59 (2004).

    Article  CAS  Google Scholar 

  10. S. Varghese, B. Kuriakose, S. Thomas, and A. T. Koshy, J. Adhes. Sci. Technol., 8, 235 (1997).

    Article  Google Scholar 

  11. S. Soltani, N. Ghasem, and M. H. R. Ghoreishy, Iran. Polym. J., 19, 853 (2010).

    CAS  Google Scholar 

  12. T. D. Sreeja and S. K. N. Kutty, Elastomers Plast., 34, 157 (2002).

    Article  CAS  Google Scholar 

  13. T. Kotoky and S. K. J. Dolui, Sol. Gel. Sci. Technol., 20, 107 (2004).

    Article  Google Scholar 

  14. J. Chrusoid and L. Slusaraski, Mater. Sci., 21, 461 (2003).

    Google Scholar 

  15. L. Mathew and S. K. N. Kutty, Polym. Plast. Technol. Eng., 48, 75 (2009).

    Article  CAS  Google Scholar 

  16. L. Mathew and S. K. N. Kutty, J. Appl. Polym. Sci., 112, 2203 (2009).

    Article  CAS  Google Scholar 

  17. L. Mathew and S. K. N. Kutty, Prog. Rubber. Plast. Recycling Technol., 26, 1 (2010).

    CAS  Google Scholar 

  18. M. Bhattacharya, M. Maiti, and A. K. J. Bhowmick, Polym. Eng. Sci., 49, 81 (2009).

    Article  CAS  Google Scholar 

  19. M. Tavakoli, A. A. Katbab, and H. Nazockdast, J. Appl. Polym. Sci., 123, 1853 (2012).

    Article  CAS  Google Scholar 

  20. T. P. Mohan, J. Kuriakose, and K. J. Kanny, Ind. Eng. Chem., 17, 264 (2011).

    Article  CAS  Google Scholar 

  21. C. Shan, Z. Gu, L. Wang, P. Li, G. Song, Z. Gao, and X. Yang, J. Appl. Polym. Sci., 119, 1185 (2011).

    Article  CAS  Google Scholar 

  22. M. Andideh, G. Naderi, M. H. R. Ghoreishy, and S. Soltani, Polym. Plast. Technol. Eng., 52, 1016 (2013).

    Article  CAS  Google Scholar 

  23. S. Soltani, N. Ghasemi, and M. H. R. Ghoreishy, J. Rubb. Res., 13, 110 (2010).

    CAS  Google Scholar 

  24. V. M. Murthy, A. K. Bhowmik, and S. K. De, J. Mater. Sci., 17, 709 (1982).

    Article  CAS  Google Scholar 

  25. T. D. Sreeja and S. K. N. Kutty, Polym. Plast. Technol. Eng., 42, 239 (2003).

    Article  CAS  Google Scholar 

  26. C. Rajesh, G. Unnikrishnan, E. Purushothaman, and S. Thomas, J. Appl. Polym. Sci., 92, 1023 (2004).

    Article  CAS  Google Scholar 

  27. M. N. Ismail and A. M. Ghoneim, Polym. Plast. Technol. Eng., 38, 71 (1999).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghasem Naderi.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andideh, M., Naderi, G., Ghoreishy, M.H.R. et al. Effects of nanoclay and short nylon fiber on morphology and mechanical properties of nanocomposites based on NR/SBR. Fibers Polym 15, 814–822 (2014). https://doi.org/10.1007/s12221-014-0814-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0814-7

Keywords

Navigation