Skip to main content

Preparation of carboxymethyl cellulose superabsorbents from waste textiles


Production of superabsorbent polymers from cotton and viscose waste textiles was investigated. The cellulose wastes were carboxymethylated, crosslinked by divinylsulfone, and then converted to superabsorbent material using air-drying, freeze-drying, or air-drying after phase inversion. The separation of cellulose from synthetic polymers in the textile (polyester) was carried out by direct dissolution of cellulose in N-methylmorpholine-N-oxide (NMMO), or separation by dissolution in water after carboxymethylation of the textiles. The progress of the carboxymethylation reaction was evaluated by measurement of the degree of substitution (DS) of carboxymethyl cellulose (CMC). The DS values of 0.50–0.86 confirmed the prosperous substitution of hydrophilic carboxymethyl groups into the cellulosic chains. The water binding capacity and the swelling rate of the superabsorbents prepared under different conditions were measured. Under the best condition the superabsorbent obtained from waste textiles showed an ultimate water binding capacity of 541 g/g which was notably higher than that of the reference superabsorbent derived from cotton linter (470 g/g). The amount of absorbed water by this product exceeded that of the reference sample after 60 min immersion.

This is a preview of subscription content, access via your institution.


  1. S. R. Shukla, A. M. Harad, and D. Mahato, J. Appl. Polym. Sci., 100, 186 (2006).

    Article  CAS  Google Scholar 

  2. Y. Wang, “Recycling in Textiles”, 3rd ed., Woodhead Publishing in Textiles, CRC Press Cambridge, 2006.

    Book  Google Scholar 

  3. A. Jeihanipour, K. Karimi, C. Niklasson, and M. J. Taherzadeh, Waste Manage., 30, 2504 (2010).

    Article  CAS  Google Scholar 

  4. Y. Wang, Waste and Biomass Valorization, 1, 135 (2010).

    Article  Google Scholar 

  5. Y. Wang, Y. Zhang, M. Polk, S. Kumar, and J. Muzzy in “Plastics and the Environment: A Handbook” (A. L. Andrady Eds.), 1st ed., pp.697–725, John Wiley & Sons, New York, 2003.

  6. A. Jeihanipour and M. J. Taherzadeh, Bioresour. Technol., 100, 1007 (2009).

    Article  CAS  Google Scholar 

  7. H. T. Lokhande and V. D. Gotmare, Bioresour. Technol., 68, 283 (1999).

    Article  CAS  Google Scholar 

  8. M. A. Nahil and P. T. Williams, J. Anal. Appl. Pyrolysis, 89, 51 (2010).

    Article  CAS  Google Scholar 

  9. E. M. Aizenshtein, Fibre Chem., 36, 1 (2004).

    Article  CAS  Google Scholar 

  10. H. P. Fink, P. Weigel, H. J. Purz, and J. Ganster, Prog. Polym. Sci., 26, 1473 (2001).

    Article  CAS  Google Scholar 

  11. J. I. Kroschwitz and M. H. Grant in “Kirk-Othmer Encyclopedia of Chemical Technology”, (Watcher Eds.) 4th ed., Vol.5, pp.248–281 Wiley & Sons, Inc., New York, 1999.

  12. H. Togrul and N. Arslan, Carbohyd. Polym., 54, 73 (2003).

    Article  CAS  Google Scholar 

  13. C. Barba, D. Montané, M. Rinaudo, and X. Farriol, Cellulose, 9, 319 (2002).

    Article  CAS  Google Scholar 

  14. H. Bidgoli, A. Zamani, and M. J. Taherzadeh, Carbohyd. Res., 345, 2683 (2010).

    Article  CAS  Google Scholar 

  15. C. Chang, B. Duan, J. Cai, and L. Zhang, Eur. Polym. J., 46, 92 (2010).

    Article  CAS  Google Scholar 

  16. H. Nie, M. Liu, F. Zhan, and M. Guo, Carbohyd. Polym., 58, 185 (2004).

    Article  CAS  Google Scholar 

  17. T. Yoshimura, K. Matsuo, and R. Fujioka, J. Appl. Polym. Sci., 99, 3251 (2006).

    Article  CAS  Google Scholar 

  18. F. Lionetto, A. Sannino, G. Mensitieri, and A. Maffezzoli, Macromol. Symp., 200, 199 (2003).

    Article  CAS  Google Scholar 

  19. G. Marc, G. Mele, L. Palmisano, P. Pulito, and A. Sannino, J. Green Chem., 8, 439 (2006).

    Article  Google Scholar 

  20. R. H. Perry and D. W. Green, “Perry’s Chemical Engineers’ Handbook”, 7th ed., McGrow-Hill, New York, 1999.

    Google Scholar 

  21. B. L. Browning, “Methods of Wood Chemistry”, Vol.1, Interscience Publishers, New York, 1967.

    Google Scholar 

  22. D. Wang, Z. Q. Song, and S. B. Shang, J. Appl. Polym. Sci., 107, 4116 (2008).

    Article  CAS  Google Scholar 

  23. H. T. Lokhande and P. V. Varadarajan, Bioresour. Technol., 45, 161 (1993).

    Article  CAS  Google Scholar 

  24. S. Kamel, N. Ali, K, Jahangir, S. M. Shah, and A. A. El-Gendy, eXPRESS Polym. Lett., 2, 258 (2008).

    Article  Google Scholar 

  25. F. Lenzi, A. Sannino, A. Borriello, F. Porro, D. Capitani, and G. Mensitieri, Polymer, 44, 1577 (2003).

    Article  CAS  Google Scholar 

  26. A. Zamani, D. Henriksson, and M. J. Taherzadeh, Carbohyd. Polym., 80, 1091 (2010).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations


Corresponding author

Correspondence to Azam Jeihanipour.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bidgoli, H., Zamani, A., Jeihanipour, A. et al. Preparation of carboxymethyl cellulose superabsorbents from waste textiles. Fibers Polym 15, 431–436 (2014).

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Carboxymethyl cellulose
  • Cellulose separation
  • Superabsorbent polymer
  • Waste textiles