Skip to main content
Log in

Designing artificial anterior cruciate ligaments based on novel fibrous structures

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The present paper reports the development of novel braided structures using polyamide 6.6 fibers for application as artificial anterior cruciate ligaments (ACLs). The developed structures were circular braids, axially reinforced with either a number of core yarns or braided structures. Tensile behavior of these structures was characterized and the effects of number of axial yarns or braids and, the number of yarns used in the axial braids were thoroughly investigated. From the experimental results, it was observed that the braided structures with axial braids could mimic the load-elongation behaviour of native ACL. The average breaking extension and strain at toe region were 30 % and 4.3 % respectively, which are in the range of native ACLs. The maximum breaking force and stiffness achieved with 7 axial braids, each produced using 6 yarns were 274 N and 13.5 N/mm respectively and, both breaking force and stiffess showed linear increase with the number of axial braids as well as number of yarns used in the axial braids. Therefore, it is possible to design an artificial graft using these novel braided sturctures with mechanical properties similar to that of native ACLs, through adjustment of these structural parameters, as these braided structures have much smaller diameter (0.5 mm) than native ACLs (11 mm).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. Freeman, “Bone and Tissue Regeneration Insights — Tissue Engineering Options for Ligament Healing”, pp.13–23, Libertas Academica Ltd., 2009.

    Google Scholar 

  2. A. C. Vieira, R. M. Guedes, and A. T. Marques, J. Biomech., 42, 2421 (2009).

    Article  CAS  Google Scholar 

  3. D. T. Gulick and H. N. Yoder, J. Sports Sci. Med., 1, 63 (2002).

    Google Scholar 

  4. C. Legnani, A. Ventura, C. Terzaghi, E. Borgo, and W. Albisetti, Int. Orthop., 34, 465 (2010).

    Article  Google Scholar 

  5. D. L. Wise, D. J. Trantolo, D. E. Altobelli, M. J. Yaszemski, J. D. Gresser, and E. R. Schwartz in “Encyclopedic Handbook of Biomaterials and Bioengineering—Part A: Materials”, Marcel Dekker, New York, 1995.

    Google Scholar 

  6. F. H. Silver, J. W. Freeman, and G. P. Seehra, J. Biomech., 36, 1529 (2003).

    Article  Google Scholar 

  7. C. T. Laurencin and J. W. Freeman, Biomaterials, 26, 7530 (2005).

    Article  CAS  Google Scholar 

  8. L. Yahia, N. Hagemeister, G. Drouin, C. H. Rivard, S. Rhalmi, and N. Newman, “Ligaments and Ligamentoplasties”, p.57, Springer-Verlag, New York, 1996.

    Google Scholar 

  9. N. Chandrashekar, H. Mansouri, J. Slauterbeck, and J. Hashemi, J. Biomech., 39, 2943 (2006).

    Article  Google Scholar 

  10. S. L. Y. Woo, J. M. Hollis, D. J. Adams, R. M. Lyon, and S. Takai, Am. J. Sports Med., 19, 217 (1991).

    Article  CAS  Google Scholar 

  11. S. Karmani and T. Ember, Curr. Orthop., 17, 369 (2003).

    Article  Google Scholar 

  12. P. S. Freudiger, Tech. Text. Int., 3, 12 (1994).

    Google Scholar 

  13. F. Noyes, D. Butler, E. Grood, R. Zernicke, and M. Hefti, J. Bone Joint Surg., 66-A, 344 (1984).

    Google Scholar 

  14. M. Tabrizian, A. Leroy-Gallisot, and L. Yahia, “Technical Report: Evaluation of Synthetic LARS Knee Ligaments”, pp.1–34, Biomechanics and Biomaterials Research Group, École Polytechnique de Montréal, 1996.

    Google Scholar 

  15. P. Potluri, A. Rawal, M. Rivaldi, and I. Porat, Compos. Part A, 34, 481 (2003).

    Article  Google Scholar 

  16. J. A. Cooper, H. H. Lu, F. K. Ko, J. W. Freeman, and C. T. Laurencin, Biomaterials, 26, 1523 (2005).

    Article  CAS  Google Scholar 

  17. H. Jadeja, D. Yeoh, M. Lal, and M. Mowbray, Knee, 14, 439 (2007).

    Article  Google Scholar 

  18. P. Potluri, W. D. Cooke, A. L. Lamia, and E. C. Ortega, Journal of Textile and Apparel Technology and Management, 3, 1 (2003).

    Google Scholar 

  19. H. Jedda, S. B. Abdessalem, M. Ragoubi, and F. Sakli, J. Text. I., 99, 273 (2008).

    Article  Google Scholar 

  20. J. A. Cooper Jr, J. S. Sahota, W. J. Gorum, J. Carter, S. B. Doty, and C. T. Laurencin. Proc. Natl. Acad. Sci. U. S. A., 104, 3049 (2007).

    Article  CAS  Google Scholar 

  21. H. H. Lu, J. A. Cooper Jr, S. Manuel, J. W. Freeman, M. A. Attawia, F. K. Ko, and C. T. Laurencin, Biomaterials, 26, 4805 (2005).

    Article  CAS  Google Scholar 

  22. J. W. Freeman, M. D. Woods, D. A. Cromer, L. D. Wright, and C. T. Laurencin, J. Biomater. Sci. Polym. Ed., 20, 1709 (2009).

    Article  CAS  Google Scholar 

  23. J. W. Freeman, M. D. Woods, and C. T. Laurencin, J. Biomech., 40, 2029 (2007).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Rana.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cruz, J., Rana, S., Fangueiro, R. et al. Designing artificial anterior cruciate ligaments based on novel fibrous structures. Fibers Polym 15, 181–186 (2014). https://doi.org/10.1007/s12221-014-0181-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0181-4

Keywords

Navigation