Skip to main content
Log in

Study of microstructure of oriented PET fibres exposed to supercritical carbon dioxide

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Samples of partially oriented yarn (POY) PET fibers were uniaxially drawn at temperatures below, near, and above the glass transition temperature at a constant draw ratio before exposure to supercritical carbon dioxide (scCO2) in the presence of tension at a temperature of 80 °C and a pressure of 220 bar. The effects of drawing temperature and scCO2 exposure on structural changes and on mesomorphic transitions, in particular, were investigated using differential scanning calorimetry (DSC), Fourier transform infrared spectroscopy (FTIR), and birefringence and density measurements. A good correlation was obtained among the results obtained from various techniques. Results indicated that the development of a transient mesophase structure depended strongly on process temperature. By drawing PET fibers in the samples at temperatures below the glass transition (cold-drawing), a mesophase structure developed in which the highly extended chains played a key role in structural changes incurred. Meanwhile, exposure to scCO2 led to the plasticization of the samples accompanied by their reduced glass transition and cold crystallization temperatures. This process also gave rise to the appearance of a second melting peak at about 135 °C that is related to the melting of imperfect and thin crystals, thereby inducing structural changes in the treated fibers. In the case of samples subjected to cold drawing and to scCO2 exposure, the transformation of the mesophase structure into the crystalline phase was found to be strongly affected by scCO2 exposure, while this same effect was negligible in the case of hot drawn samples.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ulf W. Gedde, “Polymer Physics”, 2nd ed., Chapman & Hall, London, 1996.

    Google Scholar 

  2. G. Odian, “Principles of Polymerization”, 4th ed., Wiley-Interscience, New York, 2004.

    Book  Google Scholar 

  3. B. Wunderlich, “Thermal Analysis of Polymeric Materials”, Springer, 2005.

    Google Scholar 

  4. L. H. Sperling, “Introduction to Physical Polymer Science”, 4th ed., Wiley-Interscience, New York, 2006.

    Google Scholar 

  5. D. Kawakami, S. Hsiao, C. Burger, S. Ran, and C. Avila-Orta, Macromolecules, 38, 91 (2005).

    Article  CAS  Google Scholar 

  6. C. I. Martins and M. Cakmak, Polymer, 48, 2109 (2007).

    Article  CAS  Google Scholar 

  7. A. Mahendrasingam, D. J. Blundell, C. Martin, V. Urban, T. Narayanan, and W. Fuller, Polymer, 46, 6044 (2005).

    Article  CAS  Google Scholar 

  8. S. Ran, Z. Wang, C. Burger, B. Chu, and B. S. Hsiao, Macromolecules, 35, 10102 (2002).

    Article  CAS  Google Scholar 

  9. A. Mahendrasingam, C. Martin, W. Fuller, D. J. Blundell, R. J. Oldman, D. H. MacKerron, J. L. Harvie, and C. Riekel, Polymer, 41, 1217 (2000).

    Article  CAS  Google Scholar 

  10. R. Rastogl, W. P. Vellinga, S. Rastogl, C. Schick, and H. E. H. Meijer, J. Polym. Sci., Pol. Phys., 42, 2092 (2004).

    Article  Google Scholar 

  11. D. Kawakami, B. S. Hsiao, S. Ran, C. Burger, B. Fu, I. Sics, B. Chu, and T. Kikutani, Polymer, 45, 905 (2004).

    Article  CAS  Google Scholar 

  12. A. Mahendrasingam, D. J. Blundell, A. K. Wright, V. Urban, T. Narayanan, and W. Fuller, Polymer, 44, 5915 (2003).

    Article  CAS  Google Scholar 

  13. T. Sun, A. Zhang, F. M. Li, and R. S. Porter, Polymer, 29, 2115 (1988).

    Article  CAS  Google Scholar 

  14. F. S. Smith and R. D. Steward, Polymer, 15, 283 (1974).

    Article  CAS  Google Scholar 

  15. R. J. Young and W. Y. Yeh, Polymer, 35, 3844 (1994).

    Article  CAS  Google Scholar 

  16. T. Uchiyama, M. Suyama, M. M. Alam, T. Asano, S. Henning, A. Flores, F. J. Balta Calleja, and M. F. Mina, Polymer, 48, 542 (2007).

    Article  CAS  Google Scholar 

  17. E. B. Sirota, Macromolecules, 40, 1043 (2007).

    Article  CAS  Google Scholar 

  18. P. H. Geil, “Structure Development and Mechanical Behavior During Unaxial Drawing of PET”, in Handbook of Thermoplastic Polyesters, (S. Fakirov Ed.), Vol. 1, Wiley-VCH, Weinheim, 2002.

    Google Scholar 

  19. J. K. Keum, H. J. Jeon, H. H. Song, J. I. Choi, and Y. K. Son, Polymer, 49, 4882 (2008).

    Article  CAS  Google Scholar 

  20. S. Rajendran and S. P. Mishra, Polym. Polym. Compos., 15, 103 (2007).

    CAS  Google Scholar 

  21. D. Chidambaram, R. Venkatraj, and P. Manisankar, J. Appl. Polym. Sci., 89, 1555 (2003).

    Article  CAS  Google Scholar 

  22. P. Chandra and W. J. Koros, Polymer, 50, 236 (2009).

    Article  CAS  Google Scholar 

  23. J. Jiao, Q. Xu, L. Li, T. Tsubasa, and T. Kobayashi, Colloid Polym. Sci., 286, 1485 (2008).

    Article  CAS  Google Scholar 

  24. H. Ohde, C. M. Wai, and J. M. Rodriguez, Colloid Polym. Sci., 285, 475 (2007).

    Article  CAS  Google Scholar 

  25. A. Bartolotta, G. D. Marco, F. Farsaci, M. Lanza, and M. Pieruccini, Polymer, 44, 5771 (2003).

    Article  CAS  Google Scholar 

  26. Z. Zhang, S. Wu, M. Ren, and C. Xiao, Polymer, 45, 4361 (2004).

    Article  CAS  Google Scholar 

  27. P. G. Karagiannidis, A. C. Stergiou, and G. P. Karayannidis, Eur. Polym. J., 44, 1475 (2008).

    Article  CAS  Google Scholar 

  28. Y. Wang, D. Shen, and R. Qian, J. Polym. Sci. Polym. Phys., 36, 783 (1998).

    Article  CAS  Google Scholar 

  29. M. S. Sfiligoj and P. Zipper, Colloid Polym. Sci., 276, 144 (1998).

    Article  CAS  Google Scholar 

  30. M. Canetti and F. Bertini, Eur. Polym. J., 46, 270 (2010).

    Article  CAS  Google Scholar 

  31. A. Hou, K. Xie, and J. Dai, J. Appl. Polym. Sci., 92, 2008 (2004).

    Article  CAS  Google Scholar 

  32. M. E. Rezac and T. John, Polymer, 39, 599 (1998).

    Article  CAS  Google Scholar 

  33. R. Y. F. Liu, D. A. Schiraldi, A. Hiltner, and E. Baer, ANTEC, 3225 (2003).

    Google Scholar 

  34. J. M. Berry, W. Brostow, M. Hess, and E. G. Jacobs, Polymer, 39, 4081 (1998).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Morshed.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baseri, S., Karimi, M. & Morshed, M. Study of microstructure of oriented PET fibres exposed to supercritical carbon dioxide. Fibers Polym 15, 161–168 (2014). https://doi.org/10.1007/s12221-014-0161-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0161-8

Keywords

Navigation