Skip to main content
Log in

Effect of molecular weight and concentration on crystallinity and post drawing of wet spun silk fibroin fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Wet spun silk fibroin (SF) filaments have attracted considerable attention because of their potential in biotechnological applications including surgical sutures, tissue engineering and wound dressing. Although the molecular weight (MW) of polymers is one of key factors affecting the wet spinnability of dope along with the structural characteristics and properties of wet spun filament, no related study has been conducted. In this study, regenerated SFs with different MWs and concentrations were prepared by wet spinning. The effects of the SF concentration and MW on 1) wet spinnability and rheology of silk dope solution and 2) crystallinity index and post drawing performance of wet spun silk filament were examined. Their relationships were also investigated. The rheological measurements showed that an 80 mPa·s viscosity is needed to obtain a continuous wet spun SF filament. As the MW of SF increased, the peak position of the maximum draw ratio shifted to a lower SF concentration with a concomitant increase in the maximum draw ratio value at the peak. Interestingly, the crystallinity index obtained from Fourier transform infrared spectroscopy (FTIR) revealed a similar trend to the maximum draw ratio suggesting that the post drawing ability is strongly affected by the quantity of short-ordered crystalline regions in wet spun SF filaments. On the other hand, X-ray diffraction did not detect any crystallinity change in the SF filament produced from the formic acid solvent system. It was concluded that MW strongly affected the dope solution viscosity and the crystallinity index from FTIR and these determined the fiber formation of dope and post drawing performance of fiber.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. H. Sakabe, H. Ito, T. Miyamoto, Y. Noishiki, and W. S. Ha, Sen-I Gakkaishi, 45, 487 (1989).

    Article  CAS  Google Scholar 

  2. N. Minoura, S. Aiba, Y. Gotoh, M. Tsukada, and Y. Imai, J. Biomed. Mater. Res., 29, 1215 (1995).

    Article  CAS  Google Scholar 

  3. J. W. Kim, C. S. Ki, Y. H. Park, H. J. Kim, and I. C. Um, Macromol. Res., 18, 442 (2010).

    Article  CAS  Google Scholar 

  4. M. Santin, A. Motta, G. Freddi, and M. Cannas, J. Biomed. Mater. Res., 46, 382 (1999).

    Article  CAS  Google Scholar 

  5. L. Meinel, S. Hofmann, V. Karageorgiou, C. Kirker-Head, J. McCool, G. Gronowicz, L. Zichner, R. Langer, G. Vunjak-Novakovic, and D. L. Kaplan, Biomaterials, 26, 147 (2005).

    Article  CAS  Google Scholar 

  6. B. M. Min, G. Lee, S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Biomaterials, 25, 1289 (2004).

    Article  CAS  Google Scholar 

  7. U. Kim, J. Park, H. J. Kim, M. Wada, and D. L. Kaplan, Biomaterials, 25, 2775 (2005).

    Article  Google Scholar 

  8. C. S. Ki, S. Y. Park, H. J. Kim, H. M. Jung, K. M. Woo, J. W. Lee, and Y. H. Park, Biotechnol. Lett., 30, 405 (2008).

    Article  CAS  Google Scholar 

  9. S. Y. Park, C. S. Ki, Y. H. Park, H. M. Jung, K. M. Woo, and H. J. Kim, Tissue Eng. Part A, 16, 1271 (2010).

    Article  CAS  Google Scholar 

  10. J. Kim, C. Kim, C. Park, J. Seo, H. Kweon, S. Kang, and K. G. Lee, Wound Repair Regen., 18, 132 (2010).

    Article  Google Scholar 

  11. A. Schneider, X. Y. Wang, D. L. Kaplan, J. A. Garlick, and C. J. Egles, Acta Biomater., 5, 2570 (2009).

    Article  CAS  Google Scholar 

  12. I. C. Um, C. S. Ki, H. Kweon, K. G. Lee, D. W. Ihm, and Y. H. Park, Int. J. Biol. Macromol., 34, 107 (2004).

    Article  CAS  Google Scholar 

  13. K. Ohgo, C. H. Zhao, M. Kobayashi, and T. Asakura, Polymer, 44, 841 (2003).

    Article  CAS  Google Scholar 

  14. S. H. Kim, Y. S. Nam, T. S. Lee, and W. H. Park, Polym. J., 35, 185 (2003).

    Article  CAS  Google Scholar 

  15. B. D. Lawrence, J. K. Marchant, M. A. Pindrus, F. G. Omenetto, and D. L. Kaplan, Biomaterials, 30, 1299 (2009).

    Article  CAS  Google Scholar 

  16. A. B. Mathur, A. E. Tonelli, T. Rathke, and S. Hudson, Biopolymers, 42, 61 (1997).

    Article  CAS  Google Scholar 

  17. I. C. Um and Y. H. Park, Fiber. Polym., 8, 579 (2007).

    Article  CAS  Google Scholar 

  18. O. Etienne, A. Schneider, J. A. Kluge, C. Bellemin-Laponnaz, C. Polidori, G. G. Leisk, D. L. Kaplan, J. A. Garlick, and C. J. Egles, J. Periodont., 80, 1852 (2009).

    Article  Google Scholar 

  19. H. J. Cho and I. C. Um, Int. J. Indust. Entomol., 23, 183 (2011).

    Article  Google Scholar 

  20. I. C. Um, H. Kweon, K. G. Lee, D. W. Ihm, J. Lee, and Y. H. Park, Int. J. Biol. Macromol., 34, 89 (2004).

    Article  CAS  Google Scholar 

  21. S. W. Ha, A. E. Tonelli, and S. Hudson, Biomacromolecules, 6, 1722 (2005).

    Article  CAS  Google Scholar 

  22. J. P. Yan, G. Q. Zhou, D. P. Knight, Z. Z. Shao, and X. Chen, Biomacromolecules, 11, 1 (2010).

    Article  CAS  Google Scholar 

  23. O. Liivak, A. Blye, N. Shah, and L. W. Jelinski, Macromolecules, 31, 2947 (1998).

    Article  CAS  Google Scholar 

  24. H. J. Cho, Y. J. Yoo, J. W. Kim, Y. H. Park, D. G. Bae, and I. C. Um, Polym. Degrad. Stabil., 97, 1060 (2012).

    Article  CAS  Google Scholar 

  25. J. S. Ko, K. H. Lee, D. G. Bae, and I. C. Um, Fiber. Polym., 11, 14 (2010).

    Article  CAS  Google Scholar 

  26. G. Q. Zhou, Z. Z. Shao, D. P. Knight, J. P. Yan, and X. Chen, Adv. Mater., 21, 366 (2009).

    Article  CAS  Google Scholar 

  27. C. S. Ki, K. H. Lee, D. H. Baek, M. Hattori, I. C. Um, D. W. Ihm, and Y. H. Park, J. Appl. Polym. Sci., 105, 1605 (2007).

    Article  CAS  Google Scholar 

  28. D. M. Phillips, L. F. Drummy, R. R. Naik, H. C. De Long, D. M. Fox, P. C. Trulove, and R. A. Mantz, J. Mater. Chem., 15, 4206 (2005).

    Article  CAS  Google Scholar 

  29. H. J. Cho, C. S. Ki, H. Oh, K. H. Lee, and I. C. Um, Int. J. Biol. Macromol., 51, 336 (2012).

    Article  CAS  Google Scholar 

  30. N. W. Bhat and G. S. Nadiger, J. Appl. Polym. Sci., 25, 921 (1980).

    Article  CAS  Google Scholar 

  31. H. J. Cho and I. C. Um, Int. J. Indust. Entomol., 20, 99 (2010).

    Google Scholar 

  32. J. S. Ko and I. C. Um, Int. J. Indust. Entomol., 19, 181 (2009).

    Google Scholar 

  33. I. C. Um, H. Kweon, Y. H. Park, and S. Hudson, Int. J. Biol. Macromol., 29, 91 (2001).

    Article  CAS  Google Scholar 

  34. H. J. Kim, D. E. Chung, and I. C. Um, Int. J. Indust. Entomol., 26, 54 (2013).

    Article  Google Scholar 

  35. I. C. Um, H. Y. Kweon, K. G. Lee, and Y. H. Park, Int. J. Biol. Macromol., 33, 203 (2003).

    Article  CAS  Google Scholar 

  36. J. L. Koenig in “Applied Infrared Spectroscopy” (D. N. Kendall Eds.), p.245, Reinhold Pub. Co., New York, 1966.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to In Chul Um.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, D.E., Um, I.C. Effect of molecular weight and concentration on crystallinity and post drawing of wet spun silk fibroin fiber. Fibers Polym 15, 153–160 (2014). https://doi.org/10.1007/s12221-014-0153-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0153-8

Keywords

Navigation