Skip to main content
Log in

A comprehensive 3D analysis of polymer flow through a conical spiral extrusion die

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

Several restrictions which are related to extruder machinery and nature of process material exist in the design of plastic extrusion dies. To this respect, it is very important to consider design criteria and limitations in order to operate extrusion dies at desired production rate and temperature. In the current study, flow field characteristics through a conical spiral mandrel die are analysed in detail by 3D Computational Fluid Dynamics (CFD) simulations. The effects of operating conditions such as production rate and temperature on pressure drop through the spiral mandrel die and the occurence of melt fracture are investigated. The temperature dependent viscosity versus shear rate data for grade QB79P (CarmelTech) polypropylene (PP) melt under study are measured by use of rotational and capillary rheometers. Stress terms in the momentum equations are modeled by Generalized Newtonian Fluid (GNF) Model. For this, Bird-Carreau Model is employed as the viscosity model for the polymer melt. 3D CFD analyses provide comprehensive data and understanding with regard to flow behaviour through complex extrusion dies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. L. Booy, Polym. Eng. Sci., 22, 432 (1982).

    Article  CAS  Google Scholar 

  2. Y. Matsubara, Polym. Eng. Sci., 19, 169 (1979).

    Article  CAS  Google Scholar 

  3. H. H. Winter and H. G. Fritz, Polym. Eng. Sci., 26, 543 (1986).

    Article  CAS  Google Scholar 

  4. J. D. Reid, O. H. Campanella, C. M. Corvolan, and M. R. Okos, Polym. Eng. Sci., 43, 693 (2003).

    Article  CAS  Google Scholar 

  5. P. Saillard and J. F. Agassant, Polym. Proc. Eng., 2, 37 (1984).

    CAS  Google Scholar 

  6. J. Vlcek, V. Kral, and K. Kouba, Plast. Rub. Proc. Appl., 4, 309 (1984).

    Google Scholar 

  7. C. Rauwendaal, Polym. Eng. Sci., 27, 186 (1987).

    Article  Google Scholar 

  8. J. Perdikoulias, J. Vlcek, and J. Vlachopoulos, Adv. Polym. Tech., 10, 111 (1990).

    Article  CAS  Google Scholar 

  9. A. Limper and H. Stieglitz, SPE ANTEC Tech. Papers, 1, 1 (1998).

    Google Scholar 

  10. H. Higuchi and K. Koyama, Int. Polym. Proc., 18, 349 (2003).

    Article  CAS  Google Scholar 

  11. M. Malekzadeh, F. Goharpey, and R. Foudazi, Int. Polym. Proc., 23, 38 (2008).

    Article  CAS  Google Scholar 

  12. M. Zatloukal, C. Tzoganakis, J. Perdikoulias, and P. Saha, Polym. Eng. Sci., 41, 1683 (2001).

    Article  CAS  Google Scholar 

  13. P. Skabrahova, J. Svabik, and J. Perdikoulias, SPE ANTEC Tech. Papers, 1, 305 (2003).

    Google Scholar 

  14. Y. Sun and M. Gupta, Adv. Polym. Tech., 25, 90 (2006).

    Article  CAS  Google Scholar 

  15. W. Han and X. Wang, J. Appl. Polym. Sci., 123, 2511 (2012).

    Article  CAS  Google Scholar 

  16. Y. Huang, C. R. Gentle, and J. B. Hull, Adv. Polym. Tech., 23, 111 (2004).

    Article  CAS  Google Scholar 

  17. C. W. Macosko, “Rheology: Principles, Measurements and Applications”, 1st ed., pp.237–252, Wiley-VCH, New York, 1994

    Google Scholar 

  18. W. Michaeli, “Extrusion Dies for Plastics and Rubber: Design and Engineering Computations”, 3rd ed., pp.156–207, Hanser, Münich, 2003.

    Book  Google Scholar 

  19. C. Rauwendaal, “Polymer Extrusion”, 4th ed., pp.175–179, Münich, Hanser, 2001.

    Google Scholar 

  20. D. G. Baird and D. I. Collias, “Polymer Processing: Principles and Design”, 1st ed., pp.20–23, Wiley-Interscience Publication, New York, 1998

    Google Scholar 

  21. PolyFlow, http://www.polyflow.be.

  22. J. Sienz, A. Goublomme, and M. Luege, Comput. Struct., 88, 610 (2010).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oktay Yilmaz.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yilmaz, O., Kısasöz, E., Seniha Guner, F. et al. A comprehensive 3D analysis of polymer flow through a conical spiral extrusion die. Fibers Polym 15, 84–90 (2014). https://doi.org/10.1007/s12221-014-0084-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-014-0084-4

Keywords

Navigation