Skip to main content

Increased environmental stability of a tungsten bronze NIR-absorbing window


We developed a facile method for increasing the environmental stability of a tungsten bronze near-infrared (NIR)-absorbing window using tetraethyl orthosilicate (TEOS) and 1H, 1H, 2H, 2H-perfluorodecyltriethoxysilane (FDS). The environmental stability of the tungsten bronze NIR-absorbing window could be enhanced by applying a variety of protective layers (i.e., TEOS, fluoropolymer (CYTOP), FDS). The protective characteristics of each layer type are discussed. The protection of tungsten bronze surfaces by TEOS and FDS layers enormously enhanced the environmental stability of the NIR absorbing window, whereas an untreated tungsten bronze film rapidly lost its NIR absorption properties. The protection efficiency followed the order: TEOS/FDS>FDS>TEOS>CYTOP. The improved environmental stability arose from the closely packed structure of FDS, which can self-assemble on an oxide surface, such as the tungsten oxide or silicon oxide surfaces. The method developed here provides a simple, robust, and versatile way to improve the environmental stability of a NIR-absorbing window.

This is a preview of subscription content, access via your institution.


  1. 1.

    U. Kreibig and M. Vollmer, “Optical Properties of Metal Clusters”, p.25, Springer-Verlag, New York, 1995.

    Book  Google Scholar 

  2. 2.

    I. Hamberg and C. G. Granqvist, J. Appl. Phys., 60, R123 (1986).

    CAS  Article  Google Scholar 

  3. 3.

    C. Guo, S. Yin, L. Huang, and T. Sato, ACS Appl. Mater. Interfaces, 3, 2794 (2001).

    Article  Google Scholar 

  4. 4.

    R. Azimirad, O. Akhavan, and A. Z. Moshfegh, J. Phys. Chem. C, 113, 13098 (2009).

    CAS  Article  Google Scholar 

  5. 5.

    H. Takeda and K. Adachi, J. Am. Ceram. Soc., 90, 4059 (2007).

    CAS  Google Scholar 

  6. 6.

    F. P. Koffyberg, K. Dwight, and A. Wold, Solid. State Commun., 30, 433 (1979).

    CAS  Article  Google Scholar 

  7. 7.

    J. M. Berak and M. J. Sienko, J. Solid State Chem., 2, 109 (1970).

    CAS  Article  Google Scholar 

  8. 8.

    H. R. Shanks, P. H. Sidles, and G. C. Danielson, Adv. Chem. Ser., 39, 237 (1963).

    CAS  Article  Google Scholar 

  9. 9.

    M. Occhiuzzi, D. Cordischi, D. Gazzoli, M. Valigi, and P. C. Heydorn, Appl. Catal. A, 269, 169 (2004).

    CAS  Article  Google Scholar 

  10. 10.

    D. W. Lynch, R. Rosei, J. H. Weaver, and C. G. Olson, J. Solid State Chem., 8, 242 (1973).

    CAS  Article  Google Scholar 

  11. 11.

    M. Green and A. Travlos, Phil. Magn. B, 51, 501 (1985).

    CAS  Article  Google Scholar 

  12. 12.

    S. H. Park, S. M. Lee, H. S. Lim, J. T. Han, D. R. Lee, H. S. Shin, Y. Jeong, J. Kim, and J. H. Cho, ACS Appl. Mater. Interfaces, 2, 658 (2010).

    CAS  Article  Google Scholar 

  13. 13.

    H. S. Lee, K. Park, J. D. Kim, T. Han, K. H. Ryu, H. S. Lim, D. R. Lee, Y. J. Kwark, and J. H. Cho, J. Mater. Chem., 21, 6968 (2011).

    CAS  Article  Google Scholar 

  14. 14.

    K. W. Oh, D. K. Kim, and S. H. Kim, Fiber. Polym., 10, 731 (2009).

    CAS  Article  Google Scholar 

Download references

Author information



Corresponding authors

Correspondence to Juhyun Park or Jeong Ho Cho.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Lee, W.H., Hwang, H., Moon, K. et al. Increased environmental stability of a tungsten bronze NIR-absorbing window. Fibers Polym 14, 2077–2082 (2013).

Download citation


  • Tungsten bronze
  • NIR-absorbing window
  • Environmental stability
  • Tetraethyl orthosilicate
  • 1H
  • 1H
  • 2H
  • 2Hperfluorodecyltriethoxysilane