Antibacterial effect of carbon nanofibers containing Ag nanoparticles
- 472 Downloads
- 9 Citations
Abstract
Silver nanoparticles imbedded in polyacrylonitrile (PAN) nanofibers and converted into carbon nanofibers by calcination was obtained in a simple three-step process. The first step involves conversion of silver ions to metallic silver nanoparticles, through reduction of silver nitrate with dilute solution of PAN. The second step involves electrospinning of viscous PAN solution containing silver nanoparticles, thus obtaining PAN nanofibers containing silver nanoparticles. The third step was converting PAN/Ag composites into carbon nanofibers containing silver nanoparticles. Scanning electron microscopy (SEM) revealed that the diameter of the nanofibers ranged between 200 and 800 nm. Transmission electron microscopy (TEM) and energy dispersive spectroscopy (EDS) showed silver nanoparticles dispersed on the surface of the carbon nanofibers. The obtained fiber was fully characterized by measuring and comparing the FTIR spectra and thermogravimetric analysis (TGA) diagrams of PAN nanofiber with and without imbedded silver nanoparticles, in order to show the effect of silver nanoparticles on the electrospun fiber properties. The obtained carbon/Ag composites were tested as gram-class-independent antibacterial agent. The electrosorption of different salt solutions with the fabricated carbon/Ag composite film electrodes was studied.
Keywords
Carbon nanofiber Electrospun Silver nanoparticle Water purification Antibacterial effectPreview
Unable to display preview. Download preview PDF.
References
- 1.D. Y. Lee, K.-H. Lee, B.-Y. Kim, and N.-I. Cho, J. Sol-Gel Sci. Technol., 54, 63 (2010).CrossRefGoogle Scholar
- 2.C. Zhang, Q. Yang, N. Zhan, L. Sun, H. Wang, Y. Song, and Y. Li, Colloids and Surfaces A: Physicochem. Eng. Aspects, 362, 58 (2010).CrossRefGoogle Scholar
- 3.Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du, S. Wang, Y. Li, X. Chen, X. Jing, and Y. Wei, Mater. Lett., 59, 3046 (2005).CrossRefGoogle Scholar
- 4.P.-O. Rujitanaroj, N. Pimpha, and P. Supaphol, Wiley Inter Science DOI 10.1002/app.31498 (2010).Google Scholar
- 5.L. Francis, F. Giunco, A. Balakrishnan, and E. Marsano, Synthesis, Current Appl. Phys., 10, 1005 (2010).CrossRefGoogle Scholar
- 6.J. Bai, Q. Yang, S. Wang, and Y. Li, Korean J. Chem. Eng., 28, 1761 (2011).CrossRefGoogle Scholar
- 7.H. H. Chae, B.-H. Kim, K. S. Yang, and J. I. Rhee, Synthetic Metals, 161, 2124 (2011).CrossRefGoogle Scholar
- 8.P. Jain and T. Pradeep, Biotechnol. Bioeng., DOI: 10.1002/bit.20368 (2011).Google Scholar
- 9.B. Bagheri, M. Abdouss, M. M. Aslzadeh, and A. M. Shoushtari, Iranian Polym. J., 19, 911 (2010).Google Scholar
- 10.M. S. A. Rahaman, A. F. Ismail, and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).CrossRefGoogle Scholar
- 11.L. Kriklavova and T. Lederer, Proc. 3rd Int. Conf. NANOCON (2011).Google Scholar
- 12.D. K. Tiwari, J. Behari, and P. Sen, World Appl. Sci. J., 3, 417 (2008).Google Scholar
- 13.G. R. Kiani, H. Sheikhloie, and N. Arsalani, Desalination, 269, 266 (2011).CrossRefGoogle Scholar
- 14.C. J. Thompson, G. G. Chase, A. L. Yarin, and D. H. Reneker, Polymer, 48, 6913 (2007).CrossRefGoogle Scholar
- 15.D. Esrafilzadeh, M. Morshed, and H. Tavanai, Synthetic Metals, 159, 267 (2009).CrossRefGoogle Scholar
- 16.S. N. Arshad, M. Naraghi, and I. Chasiotis, Carbon, 49, 1710 (2011).CrossRefGoogle Scholar
- 17.L. Kriklavova and T. Lederer, Proc. 4th Int. Conf. NANOCON (2012).Google Scholar
- 18.K. Tiwari, J. Behari, and P. Sen, World Appl. Sci. J., 3, 417 (2008).Google Scholar
- 19.R. Balamurugan, S. Sundarrajan, and S. Ramakrishna, Membranes, 1, 232 (2011).CrossRefGoogle Scholar
- 20.B. Bagheri, M. Abdouss, M. Aslzadeh, and A. Shoushtari, Iranian Polym. J., 19, 911 (2010).Google Scholar
- 21.G. Kiani, H. Sheikhloie, and N. Arsalani, Desalination, 269, 266 (2011).CrossRefGoogle Scholar
- 22.D. Shao, Q. Wei, L. Zhang, Y. Cai, and S. Jiang, Appl. Surf. Sci., 254, 6543 (2008).CrossRefGoogle Scholar
- 23.C. Thompson, G. Chase, A. Yarin, and D. Reneker, Polymer, 48, 6913 (2007).CrossRefGoogle Scholar
- 24.Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D. Reneker, and H. Fong, Polymer, 50, 2999 (2009).CrossRefGoogle Scholar
- 25.L. Kriklavova and T. Lederer, Proc. 2nd Int. Conf. NANOCON (2010).Google Scholar
- 26.Y. Tong, X. Wang, H. Su, and L. Xu, Corrosion Science, 53, 2484 (2011).CrossRefGoogle Scholar
- 27.M. Rahaman, A. Ismail, and A. Mustafa, Polym. Degrad. Stab., 92, 1421 (2007).CrossRefGoogle Scholar
- 28.M. Yu, Y. Bai, C. Wang, Y. Xu, and P. Guo, Mater. Lett., 61, 2292 (2007).CrossRefGoogle Scholar
- 29.D. Esrafilzadeh, M. Morshed, and H. Tavanai, Synthetic Metals, 159, 267 (2009).CrossRefGoogle Scholar
- 30.X. Hou, X. Yang, L. Zhang, E. Waclawik, and S. Wua, Materials and Design, 31, 1726 (2010).CrossRefGoogle Scholar
- 31.C. Su, Z. Jiang, and C. Lu, Fiber. Polym., 13, 38 (2012).CrossRefGoogle Scholar
- 32.H. Wang, P. Gao, S. Lu, H. Liu, G. Yang, J. Pinto, and X. Jiang, Electrochimica Acta, 58, 44 (2011).CrossRefGoogle Scholar
- 33.H. Zhang, H. Nie, D. Yu, C. Wu, Y. Zhang, C. Branford, and L. Zhu, Desalination, 256, 141 (2010).CrossRefGoogle Scholar
- 34.S. Arshad, M. Naraghi, and I. Chasiotis, Carbon, 49, 1710 (2011).CrossRefGoogle Scholar
- 35.P. Neghlani, M. Rafizadeh, and F. Taromi, J. Hazard. Mater., 186, 182 (2011).CrossRefGoogle Scholar
- 36.S. Moon and R. Farris, Carbon, 47, 2829 (2009).CrossRefGoogle Scholar
- 37.K. Lee, N. Shiratori, G. Lee, J. Miyawaki, I. Mochida, S. Yoon, and J. Jang, Carbon, 48, 4248 (2010).CrossRefGoogle Scholar
- 38.Y. Wang, Q. Yang, G. Shan, C. Wang, J. Du, S. Wang, Y. Li, X. Chen, X. Jing, and Y. Wei, Mater. Lett., 59, 3046 (2005).CrossRefGoogle Scholar
- 39.P. Rujitanaroj, N. Pimpha, and P. Supaphol, J. Appl. Polym. Sci., 116, 1967 (2010).Google Scholar
- 40.L. Francis, F. Giunco, A. Balakrishnan, and E. Marsano, Current Appl. Phys., 10, 1005 (2010).CrossRefGoogle Scholar
- 41.D. Lee, K. Lee, B. Kim, and N. Cho, J. Sol-Gel Sci. Technol., 54, 63 (2010).CrossRefGoogle Scholar
- 42.K. Juengsuwattananon, P. Rujitanaroj, P. Supaphol, N. Pimpha, and S. Matsuzawa, Mater. Sci., 569, 25 (2008).Google Scholar
- 43.J. Bai, Q. Yang, S. Wang, and Y. Li, Korean J. Chem. Eng., 28, 1761 (2011).CrossRefGoogle Scholar
- 44.W. Zhang, Y. Wang, and C. Sun, J. Polym. Res., 14, 467 (2007).CrossRefGoogle Scholar
- 45.C. Su, Z. Jiang, and C. Lu, Fiber. Polym., 13, 38 (2012).CrossRefGoogle Scholar
- 46.C. Teh and A. Mohamed, J. Alloy. Comp., 509, 1648 (2011).CrossRefGoogle Scholar
- 47.D. Tiwari, J. Behari, and P. Sen, World Appl. Sci. J., 3, 417 (2008).Google Scholar
- 48.T. Amna, M. Hassan, N. Barakat, D. Pandeya, S. Hong, M. Khil, and H. Kim, Appl. Microbiol. Biotechnol., 93, 743 (2012).CrossRefGoogle Scholar
- 49.H. Chae, B. Kim, K. Yang, and J. Rhee, Synthetic Metals, 161, 2124 (2011).CrossRefGoogle Scholar
- 50.H. Bai, Z. Liu, and D. D. Sun, Applied Catalysis B: Environmental, 111–112, 571 (2012).CrossRefGoogle Scholar
- 51.L. Zhang, J. Luo, T. Menkhaus, H. Varadaraju, Y. Sun, and H. Fong, J. Membr. Sci., 369, 499 (2011).CrossRefGoogle Scholar
- 52.P. Jain and T. Pradeep, Biotechnol. Bioeng., 90, 59 (2005).CrossRefGoogle Scholar
- 53.M. Seery, R. George, P. Floris, and S. Pillai, J. Photochem. Photobiol. A: Chemistry, 189, 258 (2007).CrossRefGoogle Scholar
- 54.M. Kanjwal, N. Barakat, F. Sheikh, W. Baek, M. Khil, and H. Kim, Fiber. Polym., 11, 700 (2010).CrossRefGoogle Scholar
- 55.D. Huyen, N. Tung, N. Thien, and L. Thanh, Sensors, 11, 1924 (2011).CrossRefGoogle Scholar
- 56.Y. Li, M. Ma, W. Chen, L. Li, and M. Zen, Mater. Chem. Phys., 129, 501 (2011).CrossRefGoogle Scholar
- 57.G. Sichani, M. Morshed, M. Amirnasr, and D. Abedi, J. Appl. Polym. Sci., 116, 1021 (2010).Google Scholar