Skip to main content
Log in

Effect of sericin blending on molecular orientation of regenerated silk fiber

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

The use of regenerated silk fiber is limited due to its inferior mechanical properties in spite of high potential in a wide variety of applications. Many studies have been conducted in order to improve the mechanical properties of the regenerated silk materials, but no one has so far suggested an obvious solution. Meanwhile, some reports showed evidence that structural development of silk protein can be manipulated by physical interactions between silk fibroin (SF) and silk sericin (SS) during the regeneration process, especially in recrystallization process of SF. Such a hypothesis suggests a promising clue to enhance the mechanical properties of silk-based materials. Therefore, in this study, we tried to elucidate how SS can promote developing the molecular chain orientation of SF, resulting in an improvement of mechanical properties of regenerated silk fiber during spinning process. The tensile properties of the regenerated silk fiber were significantly improved compared to those of pure SF fiber when a proper amount of SS was blend with SF; both tenacity and breaking elongation increased by approximately 30 % and 70 % at three fold draw ratio, respectively. Quantitative analysis of X-ray diffraction and Herman’s orientation coefficient confirmed that such an improvement of tensile property was mainly caused by an increase of molecular orientation induced by sericin during the drawing process.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. C. S. Ki, K. H. Lee, D. H. Baek, M. Hattori, I. C. Um, D. W. Ihm, and Y. H. Park, J. Appl. Polym. Sci., 105, 1605 (2007).

    Article  CAS  Google Scholar 

  2. I. C. Um, C. S. Ki, H. Y. Kweon, K. G. Lee, D. W. Ihm, and Y. H. Park, Int. J. Biol. Macromol., 34, 107 (2004).

    Article  CAS  Google Scholar 

  3. K. H. Lee, D. H. Baek, C. S. Ki, and Y. H. Park, Int. J. Biol. Macromol., 41, 168 (2007).

    Article  CAS  Google Scholar 

  4. T. Scheibel, Curr. Opin. Biotechnol., 16, 427 (2005).

    Article  CAS  Google Scholar 

  5. E. Marsano, P. Corsini, C. Arosio, A. Boschi, M. Mormino, and G. Freddi, Int. J. Biol. Macromol., 37, 179 (2005).

    Article  CAS  Google Scholar 

  6. K. Matsumoto, H. Uejima, T. Iwasaki, Y. Sano, and H. Sumino, J. Appl. Polym. Sci., 60, 503 (1996).

    Article  CAS  Google Scholar 

  7. C. S. Ki and Y. H. Park, Macromol. Res., 17, 935 (2009).

    Article  CAS  Google Scholar 

  8. I. C. Um, H. Y. Kweon, K. G. Lee, and Y. H. Park, Int. J. Biol. Macromol., 33, 203 (2003).

    Article  CAS  Google Scholar 

  9. K. Ohgo, F. Bagusat, T. Asakura, and U. Scheler, J. Am. Chem. Soc., 130, 4182 (2008).

    Article  CAS  Google Scholar 

  10. S. W. Ha, H. S. Gracz. A. E. Tonelli, and S. M. Hudson, Biomacromolecules, 6, 2563 (2005).

    Article  CAS  Google Scholar 

  11. S. Sohn, H. H. Strey, and S. P. Gido, Biomacromolecules, 5, 751 (2004).

    Article  CAS  Google Scholar 

  12. C. S. Ki, I. C. Um, and Y. H. Park, Polymer, 50, 4618 (2009).

    Article  CAS  Google Scholar 

  13. K. H. Lee, Macromol. Rapid Commun., 25, 1792 (2004).

    Article  CAS  Google Scholar 

  14. C. S. Ki, J. W. Kim, H. J. Oh, K. H. Lee, and Y. H. Park, Int. J. Biol. Macromol., 41, 346 (2007).

    Article  CAS  Google Scholar 

  15. H. J. Jin and D. L. Kaplan, Nature, 424, 1057 (2003).

    Article  CAS  Google Scholar 

  16. S. Ran, D. Fang, X. Zong, B. S. Hsiao, B. Chu, and P. M. Cunniff, Polymer, 42, 1601 (2001).

    Article  CAS  Google Scholar 

  17. L. F. Drummy, B. L. Farmer, and R. R. Naik, Soft Matter, 3, 877 (2007).

    Article  CAS  Google Scholar 

  18. Y. Takahashi, M. Gehoh, and K. Yuzuriha, Int. J. Biol. Macromol., 24, 127 (1999).

    Article  CAS  Google Scholar 

  19. Y. Shen, M. A. Johnson, and D. C. Martin, Macromolecules, 31, 8857 (1998).

    Article  CAS  Google Scholar 

  20. M. Rossle, P. Panine, V. S. Urban, and C. Riekel, Biopolymers, 74, 316 (2004).

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Hwan Park.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Ki, C.S., Park, Y.H. Effect of sericin blending on molecular orientation of regenerated silk fiber. Fibers Polym 14, 1460–1467 (2013). https://doi.org/10.1007/s12221-013-1460-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1460-1

Keywords

Navigation