Skip to main content
Log in

In vitro assesment of antimicrobial activity and characteristics of polyamide 6/silver nanocomposite fibers

  • Published:
Fibers and Polymers Aims and scope Submit manuscript

Abstract

In this study, the preparation method and characteristics of silver (Ag) nanoparticle (NP) loaded polyamide 6 (PA6) nanocomposite and its antimicrobial activity against Klebsiella pneumonia and Staphylococcus aureus were investigated. The melt intercalation method was used to prepare a series of PA 6 nanocomposite fibers containing, 0; 1; 3; 5 % (wt.) Ag. PA6/Ag nanocomposite fibers exhibit increased antimicrobial efficiency with the increase of nanoparticle contents. On the other hand, thermal characterization tests show that the increased concentration of Ag nanoparticles reduces the mechanical properties due to their partial agglomeration leading to flaw generation. The crystallinity of the fibers was found to decrease about 10 % with increase of Ag to 5 %. This was attributed to faster cooling rate experienced in the presence of high thermal conductivity Ag particles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. A. Dahl, B. L. S. Maddux, and J. E. Hutchison, Chem. Rev., 107, 2228 (2007).

    Article  CAS  Google Scholar 

  2. J. E. Hutchison, ACS Nano., 2, 395 (2008).

    Article  CAS  Google Scholar 

  3. L. S. Li, T. J. Hu, W. D. Yang, and A. P. Alivisatos, Nano Letters, 1, 349 (2001).

    Article  CAS  Google Scholar 

  4. A. P. S. Sawhney, B. Condon, K. V. Simgh, S. S. Pang, G. Li, and D. Hui, Text. Res. J., 78, 731 (2008).

    Article  CAS  Google Scholar 

  5. N. Nino-Martinez, G. A. Martinez-Castanon, A. Aragon-Pina, F. Martinez-Gutierrez, J. R. Martinez-Mendoza, and F. Ruiz, Nanotechnology, 19, 065711/1 (2008).

    Article  CAS  Google Scholar 

  6. V. Alt, T. Bechert, P. Streinrucke, M. Wagener, P. Seidel, E. Dingeldein, E. Domann, and R. Schnettler, Biomaterials, 25, 4383 (2004).

    Article  CAS  Google Scholar 

  7. A. D. Rusell and W. B. Hugo, Prog. Med. Chem., 31, 351 (1994).

    Article  Google Scholar 

  8. H. Y. Lee, H. K. Park, Y. M. Lee, K. Kim, and S. B. Park, Chem Commun., 28, 2959 (2007).

    Article  Google Scholar 

  9. S. H. Jeong, S. Y. Yeo, and S. C. Yi, J. Mater. Sci., 40, 5407 (2005).

    Article  CAS  Google Scholar 

  10. L. Kviteks, A. Panacek, J. Soukupova, M. Kolar, R. Vecerova, R. Prucek, M. Holecova, and R. Zboril, J. Phys. Chem. C., 112, 5825 (2008).

    Article  Google Scholar 

  11. J. R. Morones, J. L. Elechiguerra, A. Camacho, K. Holt, J. Kouri, J.T. Ramirez, and M. J. Yacaman, Nanotechnology, 16, 2346 (2005).

    Article  CAS  Google Scholar 

  12. D. W. Hatchert and H. S. White, J. Phys. Chem., 100, 9854 (1996).

    Article  Google Scholar 

  13. S. Basu, S. Jana, S. Pane, S. Pande, and T. Pal, J. Colloid. Int. Sci., 321, 288 (2008).

    Article  CAS  Google Scholar 

  14. A. Gupta, M. Wayne, and S. Wayne, Appl. Environ. Microbiol., 64, 5042 (1998).

    CAS  Google Scholar 

  15. Y. Matsumura, Y. Kuniaki, S. I. Kunisaki, and T. Tsuchido, Appl. Environ. Microbiol., 69, 4278 (2003).

    Article  CAS  Google Scholar 

  16. H. Wanga, Y. Lia, Y. Zuoa, J. Lib, S. Mab, and L. Cheng, Biomaterials, 28, 3338 (2007).

    Article  Google Scholar 

  17. R. Kumar and H. Munstedt, Polym. Int., 54, 1180 (2005).

    Article  CAS  Google Scholar 

  18. C. Damm, H. Munstedt, and A. Rosch, J. Mater. Sci., 42, 6067 (2007).

    Article  CAS  Google Scholar 

  19. R. Kumar, S. Howdle, and H. Munstedt, J. Biomed Mater. Res. Part B: Appl. Biomater., 75B, 311 (2005).

    Article  CAS  Google Scholar 

  20. B. L. Deopura in “Polyester and Polyamides” (B. L. Deopura, R. Alagirusamy, M. Joshi, and B. Gupta Eds). pp.41–60, Woodhead Publishing, Cambridge: UK, 2008

  21. A. F. Richards in “Synthetic Fibers: Nylon, Polyester”, Acrylic, Polyolefin (J. E. McIntyre Ed.), pp.20–88, Woodhead Publishing, Cambridge, UK, 2005

    Google Scholar 

  22. C. Damm, H. Munstedt, and A. Rosch, Mater. Chem. Phys., 108, 6 (2008).

    Article  Google Scholar 

  23. ASTM E 2149-01 Standard Test Method for Determining the Antimicrobial Activity of Immobilized Antimicrobial Agents Under Dynamic Contact Conditions, ASTM, USA, 2001.

  24. N. Vasanthan and D. R. Salem, J. Polym. Sci. Pol. Phys., 39, 536 (2001).

    Article  CAS  Google Scholar 

  25. P. K. Khanna, N. Singh, S. Charan, V. V. V. S. Subbarao, R. Gokhale, and U. P. Mulik, Mater. Chem. Phys., 93, 117 (2005).

    Article  CAS  Google Scholar 

  26. G. Rusua and E. Rusua, Int. J. Polym. Anal. Charact., 15, 509 (2010).

    Article  Google Scholar 

  27. R. Damerchely, M. E. Yazdanshenas, A. S. Rashidi, and R. Khajavi, Text. Res. J., 81, 1694 (2011).

    Article  CAS  Google Scholar 

  28. C. R. Kumar and H. Münstedt, Mater. Lett., 59, 1949 (2005).

    Article  Google Scholar 

  29. J. D. Mencezel and R. B. Prime, “Thermal Analysis of Polymers Fundamentals and Applications”, John Wiley & Sons Inc., Newyork, 2009

    Book  Google Scholar 

  30. S. N. Maiti and P. K. Mahapatro, Polym. Plast. Technol. Eng., 30, 559 (1991).

    Article  CAS  Google Scholar 

  31. V. K. Sharma, R. A. Yngard, and Y. Lin, Adv. Colloid Interface Sci., 145, 83 (2009).

    Article  CAS  Google Scholar 

  32. R. J. B. Pinto, P. A. A. P. Marques, C. P. Neto, T. Trindade, S. Daina, and P. Sadocco, Acta Biomaterialia, 5, 2279 (2009).

    Article  CAS  Google Scholar 

  33. Y. Zhang and J. Sun, Chin J. Med. Instrum., 31, 35 (2007).

    CAS  Google Scholar 

  34. P. L. Drake and K. J. Hazelwood, Ann. Occup. Hyg., 49, 575 (2005).

    Article  CAS  Google Scholar 

  35. S. A. Armitage, M. A. White, and H. K. Wilson, Ann. Occup. Hyg., 40, 331 (1996).

    CAS  Google Scholar 

  36. A. L. S. Chang, V. Khosravi, and B. Egbert, J. Cutan. Pathol., 46, 371 (2006).

    Google Scholar 

  37. K. D. Rosenman, A. Moss, and S. Kon, J. Occup. Med., 21, 430 (1997).

    Google Scholar 

  38. Y. M. Sue, J. Y. Lee, M. C. Wang, T. K. Lim, J. M. Sung, and J. J. Huang, Am. J. Kidney Dis., 37, 1048 (2001).

    Article  CAS  Google Scholar 

  39. C. M. Wood, R. C. Playle, and C. Hogstrand, Environ. Toxicol. Chem., 18, 70 (1999).

    Article  Google Scholar 

  40. T. Murata, M. Kanao-Koshikawa, and T. Takamatsu, Water Air Soil Pollut., 164, 103 (2005).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aysin Dural Erem.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erem, A.D., Ozcan, G., Skrifvars, M. et al. In vitro assesment of antimicrobial activity and characteristics of polyamide 6/silver nanocomposite fibers. Fibers Polym 14, 1415–1421 (2013). https://doi.org/10.1007/s12221-013-1415-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12221-013-1415-6

Keywords

Navigation